The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schrödinger Operator

被引:0
|
作者
S. N. Lakaev
Z. I. Muminov
机构
[1] Samarkand State University,
关键词
three-particle discrete Schrödinger operator; three-particle system; Hamiltonian; zero-range attractive potential; virtual level; eigenvalue; Efimov effect; essential spectrum; asymptotics; lattice;
D O I
暂无
中图分类号
学科分类号
摘要
The Hamiltonian of a system of three quantum-mechanical particles moving on the three-dimensional lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}^3 $$ \end{document} and interacting via zero-range attractive potentials is considered. The location of the essential and discrete spectra of the three-particle discrete Schrödinger operator H(K), where K is the three-particle quasimomentum, is studied. The absence of eigenvalues below the bottom of the essential spectrum of H(K) for all sufficiently small values of the zero-range attractive potentials is established.
引用
收藏
页码:228 / 231
页数:3
相关论文
共 50 条