Super congruences and Euler numbers

被引:0
作者
Zhi-Wei Sun
机构
[1] Nanjing University,Department of Mathematics
来源
Science China Mathematics | 2011年 / 54卷
关键词
central binomial coefficients; super congruences; Euler numbers; 11B65; 05A10; 05A19; 11A07; 11B68; 11E25; 11F20; 11M06; 11S99; 33C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let p > 3 be a prime. A p-adic congruence is called a super congruence if it happens to hold modulo some higher power of p. The topic of super congruences is related to many fields including Gauss and Jacobi sums and hypergeometric series. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{gathered} \sum\limits_{k = 0}^{p - 1} {\frac{{\left( {_k^{2k} } \right)}} {{2^k }}} \equiv \left( { - 1} \right)^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} - p^2 E_{p - 3} \left( {\bmod p^3 } \right), \hfill \\ \sum\limits_{k = 1}^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} {\frac{{\left( {_k^{2k} } \right)}} {k}} \equiv \left( { - 1} \right)^{{{\left( {p + 1} \right)} \mathord{\left/ {\vphantom {{\left( {p + 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} \frac{8} {3}pE_{p - 3} \left( {\bmod p^2 } \right), \hfill \\ \sum\limits_{k = 0}^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} {\frac{{\left( {_k^{2k} } \right)^2 }} {{16^k }}} \equiv \left( { - 1} \right)^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} + p^2 E_{p - 3} \left( {\bmod p^3 } \right), \hfill \\ \end{gathered}$$\end{document} where E0,E1,E2, ... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2, π−2 and the constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K: = \sum\nolimits_{k = 1}^\infty {{{\left( {\tfrac{k} {3}} \right)} \mathord{\left/ {\vphantom {{\left( {\tfrac{k} {3}} \right)} {k^2 }}} \right. \kern-\nulldelimiterspace} {k^2 }}}$$\end{document} (with (−) the Jacobi symbol), two of which are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{k = 1}^\infty {\frac{{\left( {10k - 3} \right)8^k }} {{k^3 \left( {_k^{2k} } \right)^2 \left( {_k^{3k} } \right)}} = \frac{{\pi ^2 }} {2}} and \sum\limits_{k = 1}^\infty {\frac{{\left( {15k - 4} \right)\left( { - 27} \right)^{k - 1} }} {{k^3 \left( {_k^{2k} } \right)^2 \left( {_k^{3k} } \right)}} = K.}$$\end{document}
引用
收藏
页码:2509 / 2535
页数:26
相关论文
共 49 条
  • [1] Ahlgren S.(2000)A Gaussian hypergeometric series evaluation and Apéry number congruences J Reine Angew Math 518 187-212
  • [2] Ono K.(1997)Hypergeometric series acceleration via the WZ method Electron J Combin 4 #R3-13
  • [3] Amdeberhan T.(1979)Irrationalité de Journees arithmétiques de Luminy. Astérisque 61 11-44
  • [4] Zeilberger D.(2010)(2) et Ramanujan J 23 17-587
  • [5] Apéry R.(2009)(3) Amer Math Monthly 116 567-210
  • [6] Baruah N. D.(1987)Eisenstein series and Ramanujan-type series for 1/ J Number Theory 25 201-35
  • [7] Berndt B. C.(1900)Ramanujan’s series for 1/ Quart J Math 31 1-353
  • [8] Baruah N. D.(1900): a survey Quart J Math 31 321-52
  • [9] Berndt B. C.(1989)Another congruence for the Apéry numbers Kobe J Math 6 49-348
  • [10] Chan H. H.(2006)Congruences relating to the sums of product of the first Acta Arith 123 335-360