Conservation laws, analytical solutions and stability analysis for the time-fractional Schamel–Zakharov–Kuznetsov–Burgers equation

被引:0
|
作者
O. H. EL-Kalaawy
S. M. Moawad
M. M. Tharwat
Rasha B. Al-Denari
机构
[1] Beni-Suef University,Department of Mathematics and Computer Science, Faculty of Science
关键词
Lie point symmetries; Conservation laws; Time-fractional Schamel–Zakharov–Kuznetsov–Burgers equation; Riemann–Liouville derivatives; Similarity reduction; Explicit power series; Modified trial equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(3+1)$\end{document}-dimensional time-fractional Schamel–Zakharov–Kuznetsov–Burgers (SZKB) equation. With the help of the Riemann–Liouville derivatives, the Lie point symmetries of the (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(3+1)$\end{document}-dimensional time-fractional SZKB equation are derived. By applying the Lie point symmetry method as well as Erdélyi–Kober fractional operator, we get the similarity reductions of the time-fractional SZKB equation. Conservation laws of the time-fractional SZKB are constructed. Moreover, we obtain its power series solutions with the convergence analysis. In addition, the analytical solution is obtained by modified trial equation method. Finally, stability is analyzed graphically in different planes.
引用
收藏
相关论文
共 50 条
  • [1] Conservation laws, analytical solutions and stability analysis for the time-fractional Schamel-Zakharov-Kuznetsov-Burgers equation
    EL-Kalaawy, O. H.
    Moawad, S. M.
    Tharwat, M. M.
    Al-Denari, Rasha B.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [2] CONSERVATION LAWS OF THE TIME-FRACTIONAL ZAKHAROV-KUZNETSOV-BURGERS EQUATION
    Naderifard, Azadeh
    Hejazi, S. Reza
    Dastranj, Elham
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (01): : 75 - 88
  • [3] Conservation laws, exact solutions and stability analysis for time-fractional extended quantum Zakharov–Kuznetsov equation
    Naseem Abbas
    Akhtar Hussain
    Tarek F. Ibrahim
    Manal Yagoub Juma
    Fathea M. Osman Birkea
    Optical and Quantum Electronics, 56
  • [4] Conservation laws, exact solutions and stability analysis for time-fractional extended quantum Zakharov-Kuznetsov equation
    Abbas, Naseem
    Hussain, Akhtar
    Ibrahim, Tarek F.
    Juma, Manal Yagoub
    Birkea, Fathea M. Osman
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
  • [5] Shock Waves, Variational Principle and Conservation Laws of a Schamel-Zakharov-Kuznetsov-Burgers Equation in a Magnetised Dust Plasma
    EL-Kalaawy, O. H.
    Ahmed, Engy A.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (08): : 693 - 704
  • [6] Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov-Kuznetsov equation
    Baleanu, Dumitru
    Inc, Mustafa
    Yusuf, Abdullahi
    Aliyu, Aliyu Isa
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (06): : 861 - 876
  • [7] Efficient techniques for traveling wave solutions of time-fractional Zakharov-Kuznetsov equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Abbas, Muhammad
    Zainab, Iqra
    Gillani, Syeda Rijaa
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 193 : 607 - 622
  • [8] Conservation Laws and Exact Solutions of a Generalized Zakharov-Kuznetsov Equation
    Mothibi, Dimpho Millicent
    Khalique, Chaudry Masood
    SYMMETRY-BASEL, 2015, 7 (02): : 949 - 961
  • [9] Lie symmetry analysis, conservation laws and analytical solutions of the time-fractional thin-film equation
    Xiu-Bin Wang
    Shou-Fu Tian
    Computational and Applied Mathematics, 2018, 37 : 6270 - 6282
  • [10] Lie symmetry analysis, conservation laws and analytical solutions for a generalized time-fractional modified KdV equation
    Qin, Chun-Yan
    Tian, Shou-Fu
    Wang, Xiu-Bin
    Zhang, Tian-Tian
    WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (03) : 456 - 476