Linear Independence of the Values of q-Hypergeometric Series and Related Functions

被引:0
作者
Masaaki Amou
Keijo Väänänen
机构
[1] Gunma University,Department of Mathematics
[2] University of Oulu,Department of Mathematics
来源
The Ramanujan Journal | 2005年 / 9卷
关键词
linear independence; -hypergeometric series; linear recurrence; Poincaré functional equation;
D O I
暂无
中图分类号
学科分类号
摘要
We give linear independence results for the values of certain entire series and of functions satisfying certain first order q-difference equations. The former generalizes a result of Bézivin, while the latter refines that of the second named author in qualitative form. These results imply linear independence of the values of q-hypergeometric series.
引用
收藏
页码:317 / 339
页数:22
相关论文
共 20 条
  • [1] André Y.(2000)Séries Gevrey de type arithmétique, II Ann. of Math. 151 741-746
  • [2] Amou M.(2001)Arithmetical properties of the values of functions satisfying certain functional equations of Poincaré Acta Arith. 99 389-407
  • [3] Katsurada M.(2002)Arithmetic properties of solutions of certain functional equations in several variables J. Number Theory 96 89-104
  • [4] Väänänen K.(1988)Indépendance linéaire des valeurs des solutions transcendantes de certaines équations fonctionnelles Manuscripta Math. 6 103-129
  • [5] Amou M.(1969)Arithmetische Untersuchungen unendlicher Produkte Inventiones Math. 61 275-295
  • [6] Väänänen K.(1984)A measure for the linear independence of certain numbers Results Math. 7 130-144
  • [7] Bézivin J.-P.(1999)Maße üur die lineare Unabhängigkeit von Werten ganz transzendenter Lösungen gewisser Funktionalgleichungen Abh. Math. Sem. Univ. Hamburg 69 103-122
  • [8] Bundschuh P.(1996)Propriétés arithmétiques des solutions de certaines équations fonctionnelles de Poincaré J. Théorie des Nombres Bordeaux 8 443-447
  • [9] Bundschuh P.(1988)Linear independence measures for certain numbers Results Math. 14 318-329
  • [10] Shiokawa I.(1989)Linear independence measures for values of Heine series Math. Ann. 284 449-460