Variable Metric Primal-Dual Method for Convex Optimization Problems with Changing Constraints

被引:0
|
作者
Konnov I.V. [1 ]
机构
[1] Institute of Computational Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Tatarstan, Kazan
关键词
changing constraints; changing topology; convex optimization; multi-agent optimization; primal-dual method; variable metric;
D O I
10.1134/S1995080223010237
中图分类号
学科分类号
摘要
Abstract: We propose a modified primal-dual method for general convex optimization problems with changing affine constraints. We establish convergence of the method that uses variable metric matrices at each iteration. This approach yields new opportunities for control of the parameters according to the constraints changes. In case of the multi-agent optimization problems the method can be adjusted to the changing communication topology and enables the agents to choose the parameters separately of each other. © 2023, Pleiades Publishing, Ltd.
引用
收藏
页码:354 / 365
页数:11
相关论文
共 50 条
  • [41] Inertial accelerated primal-dual methods for linear equality constrained convex optimization problems
    Xin He
    Rong Hu
    Ya-Ping Fang
    Numerical Algorithms, 2022, 90 : 1669 - 1690
  • [42] Inertial accelerated primal-dual methods for linear equality constrained convex optimization problems
    He, Xin
    Hu, Rong
    Fang, Ya-Ping
    NUMERICAL ALGORITHMS, 2022, 90 (04) : 1669 - 1690
  • [43] Primal-Dual Algorithm for Distributed Optimization with Coupled Constraints
    Kai Gong
    Liwei Zhang
    Journal of Optimization Theory and Applications, 2024, 201 : 252 - 279
  • [44] Primal-Dual Mirror Descent Method for Constraint Stochastic Optimization Problems
    Bayandina, A. S.
    Gasnikov, A. V.
    Gasnikova, E. V.
    Matsievskii, S. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (11) : 1728 - 1736
  • [45] A primal-dual dynamical approach to structured convex minimization problems
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Laszlo, Szilard Csaba
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) : 10717 - 10757
  • [46] Primal-dual stochastic distributed algorithm for constrained convex optimization
    Niu, Youcheng
    Wang, Haijing
    Wang, Zheng
    Xia, Dawen
    Li, Huaqing
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9763 - 9787
  • [47] A Golden Ratio Primal-Dual Algorithm for Structured Convex Optimization
    Chang, Xiaokai
    Yang, Junfeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [48] Computational experience with a primal-dual interior point method for smooth convex placement problems
    Kennings, A
    Frazer, M
    Vannelli, A
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : E191 - E194
  • [49] Primal-Dual Algorithms for Convex Optimization via Regret Minimization
    Nam Ho-Nguyen
    Kilinc-Karzan, Fatma
    IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (02): : 284 - 289
  • [50] Towards Totally Asynchronous Primal-Dual Convex Optimization in Blocks
    Hendrickson, Katherine R.
    Hale, Matthew T.
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 3663 - 3668