Variable Metric Primal-Dual Method for Convex Optimization Problems with Changing Constraints

被引:0
|
作者
Konnov I.V. [1 ]
机构
[1] Institute of Computational Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Tatarstan, Kazan
关键词
changing constraints; changing topology; convex optimization; multi-agent optimization; primal-dual method; variable metric;
D O I
10.1134/S1995080223010237
中图分类号
学科分类号
摘要
Abstract: We propose a modified primal-dual method for general convex optimization problems with changing affine constraints. We establish convergence of the method that uses variable metric matrices at each iteration. This approach yields new opportunities for control of the parameters according to the constraints changes. In case of the multi-agent optimization problems the method can be adjusted to the changing communication topology and enables the agents to choose the parameters separately of each other. © 2023, Pleiades Publishing, Ltd.
引用
收藏
页码:354 / 365
页数:11
相关论文
共 50 条
  • [31] A Universal Accelerated Primal–Dual Method for Convex Optimization Problems
    Hao Luo
    Journal of Optimization Theory and Applications, 2024, 201 : 280 - 312
  • [32] CONVERGENCE RATES OF INERTIAL PRIMAL-DUAL DYNAMICAL METHODS FOR SEPARABLE CONVEX OPTIMIZATION PROBLEMS
    He, Xin
    Hu, Rong
    Fang, Ya Ping
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (05) : 3278 - 3301
  • [33] Inertial primal-dual dynamics with damping and scaling for linearly constrained convex optimization problems
    He, Xin
    Hu, Rong
    Fang, Ya-Ping
    APPLICABLE ANALYSIS, 2023, 102 (15) : 4114 - 4139
  • [34] Primal-dual hybrid gradient method for distributionally robust optimization problems
    Liu, Yongchao
    Yuan, Xiaoming
    Zeng, Shangzhi
    Zhang, Jin
    OPERATIONS RESEARCH LETTERS, 2017, 45 (06) : 625 - 630
  • [35] Accelerated Primal-Dual Mirror Dynamics for Centralized and Distributed Constrained Convex Optimization Problems
    Zhao, You
    Liao, Xiaofeng
    He, Xing
    Zhou, Mingliang
    Li, Chaojie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [36] Primal-Dual Algorithm for Distributed Optimization with Coupled Constraints
    Gong, Kai
    Zhang, Liwei
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 201 (01) : 252 - 279
  • [37] Well-Posedness and Primal-Dual Analysis of Some Convex Separable Optimization Problems
    Stefanov, Stefan M.
    ADVANCES IN OPERATIONS RESEARCH, 2013, 2013
  • [38] Accelerated Primal-Dual Gradient Descent with Linesearch for Convex, Nonconvex, and Nonsmooth Optimization Problems
    S. V. Guminov
    Yu. E. Nesterov
    P. E. Dvurechensky
    A. V. Gasnikov
    Doklady Mathematics, 2019, 99 : 125 - 128
  • [39] A nested primal-dual FISTA-like scheme for composite convex optimization problems
    Bonettini, S.
    Prato, M.
    Rebegoldi, S.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (01) : 85 - 123
  • [40] Accelerated Primal-Dual Gradient Descent with Linesearch for Convex, Nonconvex, and Nonsmooth Optimization Problems
    Guminov, S. V.
    Nesterov, Yu. E.
    Dvurechensky, P. E.
    Gasnikov, A. V.
    DOKLADY MATHEMATICS, 2019, 99 (02) : 125 - 128