Variable Metric Primal-Dual Method for Convex Optimization Problems with Changing Constraints

被引:0
|
作者
Konnov I.V. [1 ]
机构
[1] Institute of Computational Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Tatarstan, Kazan
关键词
changing constraints; changing topology; convex optimization; multi-agent optimization; primal-dual method; variable metric;
D O I
10.1134/S1995080223010237
中图分类号
学科分类号
摘要
Abstract: We propose a modified primal-dual method for general convex optimization problems with changing affine constraints. We establish convergence of the method that uses variable metric matrices at each iteration. This approach yields new opportunities for control of the parameters according to the constraints changes. In case of the multi-agent optimization problems the method can be adjusted to the changing communication topology and enables the agents to choose the parameters separately of each other. © 2023, Pleiades Publishing, Ltd.
引用
收藏
页码:354 / 365
页数:11
相关论文
共 50 条
  • [11] PRIMAL-DUAL DECOMPOSITION OF SEPARABLE NONCONVEX OPTIMIZATION PROBLEMS WITH CONSTRAINTS
    ENGELMANN, B
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1990, 143 : 94 - 103
  • [12] A general primal-dual envelope method for convex programming problems
    Wright, SE
    SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (02) : 405 - 414
  • [13] Parallel Primal-Dual Method with Linearization for Structured Convex Optimization
    Zhang, Xiayang
    Tang, Weiye
    Wang, Jiayue
    Zhang, Shiyu
    Zhang, Kangqun
    AXIOMS, 2025, 14 (02)
  • [14] Primal-dual subgradient methods for convex problems
    Nesterov, Yurii
    MATHEMATICAL PROGRAMMING, 2009, 120 (01) : 221 - 259
  • [15] Primal-dual subgradient methods for convex problems
    Yurii Nesterov
    Mathematical Programming, 2009, 120 : 221 - 259
  • [16] A Universal Primal-Dual Convex Optimization Framework
    Yurtsever, Alp
    Quoc Tran-Dinh
    Cevher, Volkan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [17] Hierarchical Convex Optimization With Primal-Dual Splitting
    Ono, Shunsuke
    Yamada, Isao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (02) : 373 - 388
  • [18] Primal-Dual Solution Perturbations in Convex Optimization
    A. L. Dontchev
    R. T. Rockafellar
    Set-Valued Analysis, 2001, 9 : 49 - 65
  • [19] Primal-dual solution perturbations in convex optimization
    Dontchev, AL
    Rockafellar, RT
    SET-VALUED ANALYSIS, 2001, 9 (1-2): : 49 - 65
  • [20] A nested primal-dual iterated Tikhonov method for regularized convex optimization
    Aleotti, Stefano
    Bonettini, Silvia
    Donatelli, Marco
    Prato, Marco
    Rebegoldi, Simone
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024,