On Deformations of Lie Algebroids

被引:0
作者
Yunhe Sheng
机构
[1] Mathematics School and Institute of Jilin University,Department of Mathematics
[2] Dalian University of Technology,undefined
来源
Results in Mathematics | 2012年 / 62卷
关键词
Primary 17B65; Secondary 18B40; 58H05; Lie algebroids; jet bundle; deformations; deformation cohomology;
D O I
暂无
中图分类号
学科分类号
摘要
For any Lie algebroid A, its 1-jet bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{J} A}$$\end{document} is a Lie algebroid naturally and there is a representation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi:\mathfrak{J} A\longrightarrow\mathfrak{D} A}$$\end{document} . Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm d}_{\mathfrak{J}}}$$\end{document} the corresponding coboundary operator. In this paper, we realize the deformation cohomology of a Lie algebroid A introduced by M. Crainic and I. Moerdijk as the cohomology of a subcomplex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\Gamma({\rm Hom}(\wedge^\bullet\mathfrak{J} A,A)_{{\mathfrak{D}} A}),{\rm d}_{\mathfrak{J}})}$$\end{document} of the cochain complex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\Gamma({\rm Hom}(\wedge^\bullet\mathfrak{J} A, A)),{\rm d}_\mathfrak{J})}$$\end{document} .
引用
收藏
页码:103 / 120
页数:17
相关论文
共 22 条
  • [1] Blaom A.(2006)Geometric structures as deformed infinitesimal symmetries Trans. Am. Math. Soc. 358 3651-3671
  • [2] Chen B.(2008)Poisson–Nijenhuis structures on oriented 3D-manifolds Rep. Math. Phys. 61 361-380
  • [3] Sheng Y.(2010)Omni-Lie algebroids J. Geom. Phys. 60 799-808
  • [4] Chen Z.(2008)Deformation of Lie brackets: cohomological aspects J. Eur. Math. Soc. (JEMS) 10 1037-1059
  • [5] Liu Z.(2002)Lie algebroids, holonomy and characteristic classes Adv. Math. 170 119-179
  • [6] Crainic M.(1986)Deformations of Lie algebras Math. USSR Sbornik 55 467-473
  • [7] Moerdijk I.(2007)Deformations of Four Dimensional Lie Algebras Comm. Contemp. Math. 9 41-79
  • [8] Fernandes R.(2008)Moduli spaces of low dimensional real Lie algebras J. Math. Phys. 49 073507-130
  • [9] Fialowski A.(2003)Lie brackets on affine bundles Ann. Global Anal. Geom. 24 101-1275
  • [10] Fialowski A.(2010)Lie algebroid structures on double vector bundles and representation theory of Lie algebroids Adv. Math. 223 1236-229