Stability of Cellular Automata Trajectories Revisited: Branching Walks and Lyapunov Profiles

被引:0
作者
Jan M. Baetens
Janko Gravner
机构
[1] Ghent University,KERMIT, Department of Applied Mathematics, Biometrics and Process Control
[2] University of California,Mathematics Department
[3] Davis,undefined
来源
Journal of Nonlinear Science | 2016年 / 26卷
关键词
Asymptotic shape; Branching walk; Cellular automaton; Doubly periodic configuration; Large deviations ; Lyapunov exponent; Percolation; Stability; 60K35; 37B15;
D O I
暂无
中图分类号
学科分类号
摘要
We study non-equilibrium defect accumulation dynamics on a cellular automaton trajectory: a branching walk process in which a defect creates a successor on any neighborhood site whose update it affects. On an infinite lattice, defects accumulate at different exponential rates in different directions, giving rise to the Lyapunov profile. This profile quantifies instability of a cellular automaton evolution and is connected to the theory of large deviations. We rigorously and empirically study Lyapunov profiles generated from random initial states. We also introduce explicit and computationally feasible variational methods to compute the Lyapunov profiles for periodic configurations, thus developing an analog of Floquet theory for cellular automata.
引用
收藏
页码:1329 / 1367
页数:38
相关论文
共 59 条
[1]  
Baetens JM(2010)Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians Chaos 20 1-15
[2]  
De Baets B(2012)Control of cellular automata Phys. Rev. E 86 066201-066207
[3]  
Bagnoli F(1992)Damage spreading and Lyapunov exponents in cellular automata Phys. Lett. A 172 34-38
[4]  
El Yacoubi S(1995)Ballistic annihilation and deterministic surface growth J. Stat. Phys. 80 517-543
[5]  
Rechtman R(1995)The growth and spread of the general branching random walk Ann. Appl. Probab. 5 1008-1024
[6]  
Bagnoli F(1992)The population composition of a multitype branching random walk Ann. Appl. Probab. 2 519-765
[7]  
Rechtman R(2004)Universality in elementary cellular automata Complex Syst. 15 1-40
[8]  
Ruffo S(2006)Space-time directional Lyapunov exponents for cellular automata J. Stat. Phys. 124 1499-1509
[9]  
Belitsky V(1991)Some rigorous results for the Greenberg-Hastings model J. Theor. Probab. 4 669-690
[10]  
Ferrari PA(1998)Non-generic eigenvalue perturbations of Jordan blocks Linear Algebra Appl. 273 45-63