Weighted theory of Toeplitz operators on the Bergman space

被引:0
作者
Cody B. Stockdale
Nathan A. Wagner
机构
[1] Clemson University,School of Mathematical Sciences and Statistics
[2] Brown University,Department of Mathematics
来源
Mathematische Zeitschrift | 2023年 / 305卷
关键词
Toeplitz operators; Bergman projection; Bergman space; Békollè-Bonami weights; Primary 32A50; Secondary 32A25; 32A36; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the weighted compactness and boundedness properties of Toeplitz operators on the Bergman space with respect to Békollè-Bonami type weights. Let Tu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_u$$\end{document} denote the Toeplitz operator on the (unweighted) Bergman space of the unit ball in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document} with symbol u∈L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in L^{\infty }$$\end{document}. We characterize the compact Toeplitz operators on the weighted Bergman space Aσp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}^p_\sigma $$\end{document} for all σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} in a subclass of the Békollè-Bonami class Bp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p$$\end{document} that includes radial weights and powers of the Jacobian of biholomorphic mappings. Concerning boundedness, we show that Tu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_u$$\end{document} extends boundedly on Lσp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p_{\sigma }$$\end{document} for p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (1,\infty )$$\end{document} and weights σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} in a u-adapted class of weights containing Bp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p$$\end{document}, and we establish analogous weighted endpoint weak-type (1, 1) bounds for weights beyond B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}.
引用
收藏
相关论文
共 70 条
[1]  
Aleman A(2019)Characterizations of a limiting class Rev. Mat. Iberoam. 35 1677-1692
[2]  
Pott S(2015) of Békollé-Bonami weights J. Geom. Anal. 25 2284-2312
[3]  
Reguera MC(1998)Reproducing kernel estimates, bounded projections and duality on large weighted Bergman spaces Indiana Univ. Math. J. 47 387-400
[4]  
Arroussi H(1978)Compact operators via the Berezin transform C. R. Acad. Sci. Paris Sér. A-B 286 A775-A778
[5]  
Pau J(1987)Inégalités á poids pour le noyau de Bergman Indiana Univ. Math. J. 36 495-499
[6]  
Axler S(2013)Extension of Kerzman’s theorem on differentiability of the Bergman kernel function J. Funct. Spaces Appl. 82 138-160
[7]  
Zheng D(1998)Toeplitz operators on weighted Bergman spaces Math. Scand. 365 668-682
[8]  
Békollé D(2010)Real interpolation of compact operators between quasi-Banach spaces J. Math. Anal. Appl. 22 851-866
[9]  
Bonami A(2006)Carleson embeddings and some classes of operators on weighted Bergman spaces Rev. Mat. Iberoam. 294 89-106
[10]  
Boas HP(2018)Special Toeplitz operators on strongly pseudoconvex domains Pac. J. Math. 38 261-276