Oscillation of second order neutral dynamic equations with deviating arguments on time scales

被引:0
作者
Ying Sui
Zhenlai Han
机构
[1] University of Jinan,School of Mathematical Sciences
来源
Advances in Difference Equations | / 2018卷
关键词
Time scales; Oscillation; Neutral; Deviating arguments; 26E70; 34C10; 34K40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following second order neutral dynamic equations with deviating arguments on time scales: (r(t)(zΔ(t))α)Δ+q(t)f(y(m(t)))=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(r(t) \bigl(z^{\Delta}(t)\bigr)^{\alpha}\bigr)^{\Delta}+q(t)f \bigl(y\bigl(m(t)\bigr)\bigr)=0, $$\end{document} where z(t)=y(t)+p(t)y(τ(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$z(t)=y(t)+p(t)y(\tau(t))$\end{document}, m(t)≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(t)\leq t$\end{document} or m(t)≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(t)\geq t$\end{document}, and τ(t)≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau(t)\leq t$\end{document}. Some new oscillatory criteria are obtained by means of the inequality technique and a Riccati transformation. Our results extend and improve many well-known results for oscillation of second order dynamic equations. Some examples are given to illustrate the main results.
引用
收藏
相关论文
共 52 条
[1]  
Hilger S.(1990)Analysis on measure chains a unified approach to continuous and discrete calculus Results Math. 18 18-56
[2]  
Agarwal R.P.(2002)Dynamic equations on time scales: a survey J. Comput. Appl. Math. 1471 1-2
[3]  
Bohner M.(2006)Oscillation of second-order nonlinear neutral delay dynamic equations on time scales J. Comput. Appl. Math. 187 123-141
[4]  
O’Regan D.(2017)Oscillatory behavior of the second order functional differential equations Appl. Math. Lett. 72 3-41
[5]  
Peterson A.(2015)Oscillatory behavior of second-order half-linear damped dynamic equations Appl. Math. Comput. 254 408-418
[6]  
Saker S.H.(2014)Comparison theorems for oscillation of second-order neutral dynamic equations Mediterr. J. Math. 11 1115-1127
[7]  
Baculíková B.(2018)Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments Indag. Math. 29 548-560
[8]  
Agarwal R.P.(2014)Oscillation of second-order Appl. Math. Lett. 37 72-76
[9]  
Bohner M.(2015)-Laplace dynamic equations with a nonpositive neutral coefficient Sci. China Math. 58 1445-1452
[10]  
Li T.(2018)Kamenev-type criteria for nonlinear damped dynamic equations Complexity 2018 1-18