An integrable lattice hierarchy based on Suris system: N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{N}}$$\end{document}-fold Darboux transformation and conservation laws

被引:0
作者
Qian Li
Deng-Shan Wang
Xiao-Yong Wen
Jian-Hong Zhuang
机构
[1] Beijing Information Science and Technology University,School of Applied Science
关键词
Integrable lattice hierarchy; Hamiltonian structure; -fold Darboux transformation; Soliton solutions; Conservation laws;
D O I
10.1007/s11071-017-3898-y
中图分类号
学科分类号
摘要
An integrable lattice hierarchy is constructed from a discrete matrix spectral problem, in which one of the Suris systems is the first member of this hierarchy. Some related properties such as Hamiltonian structure of this lattice hierarchy are discussed. The Suris system is solved by the N-fold Darboux transformation. As a result, the multi-soliton solutions are derived and the soliton structures along with the interaction behaviors among solitons are shown graphically. Finally, the infinitely many conservation laws of the Suris system are given.
引用
收藏
页码:625 / 639
页数:14
相关论文
共 78 条
  • [1] Gardner CS(1967)Method for solving the Korteweg–de Vries equation Phys. Rev. Lett. 19 1095-undefined
  • [2] Greene JM(1871)Theorie de lintumescence liquide, applelee onde solitaire ou de translation, se propageant dans un canal rectangulaire C. R. Acad. Sci. 72 755-undefined
  • [3] Kruskal MD(1974)On the complete integrability of a nonlinear Schrödinger equation J. Theor. Math. Phys. 19 551-undefined
  • [4] Miura RM(2016)Multiplier method and exact solutions for a density dependent reaction-diffusion equation Appl. Math. Nonlinear Sci. 1 311-undefined
  • [5] Boussinesq J(2016)On Appl. Math. Nonlinear Sci. 1 375-undefined
  • [6] Zakharov VE(1976)-regularity of global attractors generated by strong solutions of reaction-diffusion equations Stud. Appl. Math. 55 213-undefined
  • [7] Manakov SV(1976)A nonlinear difference scheme and inverse scattering Prog. Theor. Phys. Suppl. 59 36-undefined
  • [8] Rosa M(1999)Transformation theories for nonlinear discrete systems J. Phys. A Math. Gen. 23 3903-undefined
  • [9] Gandarias ML(1994)A trace identity and its applications to the theory of discrete integrable systems J. Math. Phys. 35 4661-undefined
  • [10] Valero J(2005)R-matrix approach to lattice integrable systems Math. Comput. Simulat. 69 322-undefined