Form factors of B, Bs → η(′) and D, Ds → η(′) transitions from QCD light-cone sum rules

被引:0
作者
G. Duplančić
B. Melić
机构
[1] Rudjer Boskovic Institute,
[2] Division of Theoretical Physics,undefined
来源
Journal of High Energy Physics | / 2015卷
关键词
QCD Phenomenology; NLO Computations;
D O I
暂无
中图分类号
学科分类号
摘要
In the framework of the QCD light-cone sum rules (LCSRs) we present the analysis of all B, Bs → η(′) and D, Ds → η(′) form factors (f+, f0 and fT) by including mη′2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_{\eta^{\left(\prime \right)}}^2 $$\end{document} corrections in the leading (up to the twist-four) and next-to-leading order (up to the twist-three) in QCD, and two-gluon contributions to the form factors at the leading twist. The SU(3)-flavour breaking corrections and the axial anomaly contributions to the distribution amplitudes are also consistently taken into account. The complete results for the f0 and fT form factors of B, Bs → η(′) and D, Ds → η(′) relevant for processes like B → η(′)τντ or Bs → η(′)l+l− are given for the first time, as well as the two-gluon contribution to the tensor form factors. The values obtained for the f+ form factors are as follows: fBη+0=0.168−0.047+0.042,fBsη+0=0.212−0.013+0.015,fBη′+0=0.130−0.032+0.036,fBsη′+0=0.252−0.020+0.023\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {f}_{B\eta}^{+}(0)=0.{168}_{-0.047}^{+0.042},\left|{f}_{B_s\eta}^{+}(0)\right|=0.{212}_{-0.013}^{+0.015},{f}_{B\eta \prime}^{+}(0)=0.13{0}_{-0.032}^{+0.036},{f}_{B_s\eta \prime}^{+}(0)=0.{252}_{-0.020}^{+0.023} $$\end{document} and fDη+0=0.429−0.141+0.165,fDsη+0=0.495−0.029+0.030,fDη′+0=0.292−0.104+0.113,fDsη′+0=0.558−0.045+0.047\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {f}_{D\eta}^{+}(0)=0.{429}_{-0.141}^{+0.165},\left|{f}_{D_s\eta}^{+}(0)\right|={0.495}_{-0.029}^{+0.030},{f}_{D\eta \prime}^{+}(0)={0.292}_{-0.104}^{+0.113},{f}_{D_s\eta \prime}^{+}(0)={0.558}_{-0.045}^{+0.047} $$\end{document}. Also phenomenological predictions for semileptonic B, Bs → η(′) and D, Ds → η(′) decay modes are given.
引用
收藏
相关论文
共 110 条
[1]  
Melić B(2003)Nonfactorizable corrections to B → J/ψK Phys. Rev. D 68 034004-undefined
[2]  
Melić B(2004)LCSR analysis of exclusive two body B decay into charmonium Phys. Lett. B 591 91-undefined
[3]  
Bečirević D(2014)Lattice QCD and QCD sum rule determination of the decay constants of η Nucl. Phys. B 883 306-undefined
[4]  
Duplančić G(2011), J/ψ and h Phys. Rev. D 83 094027-undefined
[5]  
Klajn B(2011) states Eur. Phys. J. C 71 1798-undefined
[6]  
Melić B(1989)Nonleptonic B Nucl. Phys. B 312 509-undefined
[7]  
Sanfilippo F(1989) to charmonium decays: analyses in pursuit of determining the weak phase β Z. Phys. C 44 157-undefined
[8]  
Colangelo P(1990)Exploring CP-violation and η-η′ Mixing with the Nucl. Phys. B 345 137-undefined
[9]  
De Fazio F(2005) →  Phys. Rev. D 71 014015-undefined
[10]  
Wang W(2009)/ Phys. Rev. D 80 114005-undefined