Effect of the Conditions of Formation of W–C Nanopowders in a Plasma Jet on the Synthesis of Hexagonal Tungsten Carbide

被引:4
作者
Blagoveshchensky Y.V. [1 ]
Alexeev N.V. [1 ]
Samokhin A.V. [1 ]
Isaeva N.V. [1 ]
Sinaysky M.A. [1 ]
Tsvetkov Y.V. [1 ]
机构
[1] Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences (IMET RAS), Moscow
来源
Inorganic Materials: Applied Research | 2019年 / 10卷 / 03期
关键词
evaporation; low-temperature synthesis; mixing conditions; plasma chemical synthesis; tungsten carbide; ultrafine powders;
D O I
10.1134/S2075113319030043
中图分类号
学科分类号
摘要
Abstract: The effects of the conditions of a raw material introduction as well as mixing of it with a high-temperature gas flow under the plasma chemical synthesis of superdispersed powder of W–C have been studied. In the case of incomplete raw material evaporation and its fast quenching, preferred cubic tungsten carbide β-WC formation is found to occur, as well as nano- and microparticles with a complicated phase composition. In the case of complete raw material evaporation, the products of reducing synthesis are nanopowder of tungsten or semicarbide W2C depending on the amount of hydrocarbon introduced. There is a second stage of the process of low-temperature synthesis which leads to a single-phase of tungsten carbide α-WC formation. Complete evaporation of raw material must be ensured in the plasma chemical process for obtaining of α-WC powder with a maximum specific surface area. © 2019, Pleiades Publishing, Ltd.
引用
收藏
页码:566 / 571
页数:5
相关论文
共 9 条
[1]  
Tret'yakov V.I., Osnovy metallovedeniya i tekhnologii proizvodstva spechennykh tverdykh splavov (Metal Science and Production of Sintered Alloys), (1976)
[2]  
Gao L., Kear B.H., Low temperature carburization of high surface area tungsten powders, Nanostruct. Mater., 5, pp. 555-569, (1995)
[3]  
Gao L., Kear B.H., Synthesis of nanophase WC powder by a displacement reaction process, Nanostruct. Mater., 9, pp. 205-208, (1997)
[4]  
Koc R., Kodambaka S.K., Tungsten carbide (WC) synthesis from novel precursors, J. Eur. Ceram. Soc., 20, pp. 1859-1869, (2000)
[5]  
Tsvetkov Y.V., Panfilov S.A., Nizkotemperaturnaya plazma v protsessakh vosstanovleniya (Low-Temperature Plasma in Reduction Processes), (1980)
[6]  
Blagoveshchenskii Y.V., Panfilov S.A., Jet-plasma processes for powder metallurgy, Elektrometallurgiya, 3, pp. 28-34, (1999)
[7]  
Blagoveshchenskii Y.V., Samokhin A.V., Tsvetkov Y.V., Alekseev N.V., Mel'nik Y.I., Et al., RF, (2009)
[8]  
Isaeva N.V., Blagoveshchensky Y.V., Blagoveshchenskaya N.V., Mel'nik Y.I., Samokhin A.V., Alekseev N.V., Astashov A.G., Preparation of nanopowders of carbides and hard-alloy mixtures applying low-temperature plasma, Russ. J. Non-Ferrous Met., 55, pp. 585-591, (2014)
[9]  
Storms E.K., The Refractory Carbides, (1967)