Oscillation of third order functional dynamic equations with mixed arguments on time scales

被引:26
作者
Erbe L. [1 ]
Hassan T.S. [1 ]
Peterson A. [1 ]
机构
[1] Department of Mathematics, University of Nebraska-Lincoln, Lincoln
关键词
Nonlinear functional dynamic equations; Oscillation; Time scales;
D O I
10.1007/s12190-009-0326-6
中图分类号
学科分类号
摘要
In this paper we investigate the oscillation of third order nonlinear functional dynamic equation with mixed arguments. Our results extend and improve many known results for oscillation of third order dynamic equations. Some examples are given to illustrate the main results. © 2009 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:353 / 371
页数:18
相关论文
共 17 条
[1]  
Bohner M., Peterson A., Dynamic Equations on Time Scales: An Introduction with Applications, (2001)
[2]  
Advances in Dynamic Equations on Time Scales, (2003)
[3]  
Dosly O., Hilger E., A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales, J. Comput. Appl. Math., 141, 12, pp. 571-585, (2002)
[4]  
Elabbasy E.M., Hassan T.S., Oscillation of third order nonlinear functional differential equations, Differ. Equ. Appl.
[5]  
Erbe L., Hassan T.S., Peterson A., Oscillation criteria for nonlinear damped dynamic equations on time scales, Appl. Math. Comput., 203, pp. 343-357, (2008)
[6]  
Erbe L., Hassan T.S., Peterson A., Oscillation criteria for nonlinear functional neutral dynamic equations on time scales, J. Differ. Equ. Appl.
[7]  
Erbe L., Hassan T.S., Peterson A., Saker S.H., Oscillation criteria for half-linear delay dynamic equations on time scales, Nonlinear Dyn. Syst. Theory, 9, pp. 51-68, (2009)
[8]  
Erbe L., Hassan T.S., Peterson A., Saker S.H., Oscillation criteria for sublinear half-linear delay dynamic equations on time scales, Int. J. Differ. Equ., 3, pp. 227-245, (2008)
[9]  
Erbe L., Peterson A., Saker S.H., Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales, Journal of Computational and Applied Mathematics, 181, 1, pp. 92-102, (2005)
[10]  
Erbe L., Peterson A., Saker S.H., Hille and Nehari type criteria for third order dynamic equations, J. Math. Anal. Appl., 329, pp. 112-131, (2007)