Asymptotic Linear Stability of Solitary Water Waves

被引:0
作者
Robert L. Pego
Shu-Ming Sun
机构
[1] Carnegie Mellon University,Department of Mathematical Sciences, Center for Nonlinear Analysis
[2] Virginia Polytechnic Institute and State University,Department of Mathematics
来源
Archive for Rational Mechanics and Analysis | 2016年 / 222卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove an asymptotic stability result for the water wave equations linearized around small solitary waves. The equations we consider govern irrotational flow of a fluid with constant density bounded below by a rigid horizontal bottom and above by a free surface under the influence of gravity neglecting surface tension. For sufficiently small amplitude waves, with waveform well-approximated by the well-known sech-squared shape of the KdV soliton, solutions of the linearized equations decay at an exponential rate in an energy norm with exponential weight translated with the wave profile. This holds for all solutions with no component in (that is, symplectically orthogonal to) the two-dimensional neutral-mode space arising from infinitesimal translational and wave-speed variation of solitary waves. We also obtain spectral stability in an unweighted energy norm.
引用
收藏
页码:1161 / 1216
页数:55
相关论文
共 38 条
[1]  
Beale J.T.(1977)The existence of solitary water waves Commun. Pure Appl. Math. 30 373-389
[2]  
Beale J.T.(1991)Exact solitary water waves with capillary ripples at infinity Commun. Pure Appl. Math. 44 211-257
[3]  
Benjamin T.B.(1972)The stability of solitary waves Proc. R. Soc. (Lond.) Ser. A 328 153-183
[4]  
Bona J.(1975)On the stability theory of solitary waves Proc R. Soc. Lond. Ser. A 344 363-374
[5]  
Boussinesq J.(1871)Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulair C. R. Acad. Sci. Paris 72 755-759
[6]  
Boussinesq J.(1871)Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal C. R. Acad. Sci. Paris 73 256-260
[7]  
Boussinesq J.(1872)Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond J. Math. Pures et Appliq. 17 55-108
[8]  
Friedrichs K.O.(1954)The existence of solitary waves Commun. Pure Appl. Math. 7 517-550
[9]  
Hyers D.H.(1999)Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit Nonlinearity 12 1601-1627
[10]  
Friesecke G.(2002)Solitary waves on FPU lattices. II. Linear implies nonlinear stability Nonlinearity 15 1343-1359