The Hartogs Extension Phenomenon in Toric Varieties

被引:0
作者
Sergey Feklistov
Alexey Shchuplev
机构
[1] Siberian Federal University,Krasnoyarsk Mathematics Center
[2] Siberian Federal University,undefined
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Hartogs phenomenon; Toric variety; Holomorphic extension; 32D15; 32A10; 14M25;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Hartogs extension phenomenon in non-compact toric varieties and its relation to the first cohomology group with compact support. We show that a toric variety admits this phenomenon if at least one connected component of the fan complement is concave, proving by this an earlier conjecture M. Marciniak.
引用
收藏
页码:12034 / 12052
页数:18
相关论文
共 29 条
[1]  
Andersson M(2011)Koppelman formulas and the J. Funct. Anal. 261 777-802
[2]  
Samuelsson H(1962)-equation on an analytic space Bull. Soc. Math. Fr. 90 193-259
[3]  
Andreotti A(1972)Théorèmes de finitude pour la cohomologie des espaces complexes Ann. Sc. Norm. Super. Pisa 26 325-363
[4]  
Grauert H(1965)convexity and the Hans Levy problem. Part I: reduction to vanishing theorems Publ. Math. IHÉS 25 81-130
[5]  
Andreotti A(2009)Carlemann estimates for the Laplace–Beltrami equation on complex manifolds J. Reine Angew. Math. 637 41-47
[6]  
Hill D(2006)On Hartogs extension theorem on J. Math. Anal. Appl. 322 556-565
[7]  
Levi EE(1969)-complete complex spaces Am. J. Math. 91 853-873
[8]  
Andreotti A(1965)Holomorphic extensions in complex fiber bundles Ann. Math. 81 451-472
[9]  
Vesentini E(2012)The theory of hyperfunctions on totally real subsets of complex manifolds with applications to extension problems J. Geom. Anal. 22 911-933
[10]  
Colţoiu M(2009)On the extension of holomorphic functions from the boundary of a complex manifold J. Reine Angew. Math. 637 23-39