ClipAssistNet: bringing real-time safety feedback to operating rooms

被引:0
作者
Florian Aspart
Jon L. Bolmgren
Joël L. Lavanchy
Guido Beldi
Michael S. Woods
Nicolas Padoy
Enes Hosgor
机构
[1] Caresyntax GmbH,Department of Visceral Surgery and Medicine, Inselspital
[2] Komturstraße 18A,undefined
[3] Bern University Hospital,undefined
[4] University of Bern,undefined
[5] ICube,undefined
[6] University of Strasbourg,undefined
[7] CNRS,undefined
[8] IHU,undefined
来源
International Journal of Computer Assisted Radiology and Surgery | 2022年 / 17卷
关键词
Surgical intelligence; Intraoperative safety feedback; Surgical instrument visibility; Laparoscopic Cholecystectomy; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:5 / 13
页数:8
相关论文
共 106 条
  • [1] Birkmeyer JD(2013)Surgical skill and complication rates after bariatric surgery New England J Med 369 1434-1442
  • [2] Finks JF(2019)Active learning using deep bayesian networks for surgical workflow analysis Int J Comput Assist Radiol Surg 14 1079-1087
  • [3] OReilly A(2015)Characterising ‘near miss’ events in complex laparoscopic surgery through video analysis BMJ Quality Safety 24 516-521
  • [4] Oerline M(2017)Vision-based and marker-less surgical tool detection and tracking: a review of the literature Med Image Anal 35 633-654
  • [5] Carlin AM(2018)Systematic review of cystic duct closure techniques in relation to prevention of bile duct leakage after laparoscopic cholecystectomy World J Gastrointest Surg 10 57-69
  • [6] Nunn AR(2008)Cystic duct stump leaks: after the learning curve Arch Surg 143 1178-1183
  • [7] Dimick J(2020)Multi-task recurrent convolutional network with correlation loss for surgical video analysis Med Image Anal 14 1059-1067
  • [8] Banerjee M(2018)Weakly supervised convolutional lstm approach for tool tracking in laparoscopic videos Int J Comput Assist Radiol Surg 83 1356-1360
  • [9] Birkmeyer NJ(1996)Incidence and nature of bile duct injuries following laparoscopic cholecystectomy: An audit of 5913 cases Br J Surg 13 925-933
  • [10] Bodenstedt S(2018)Exploiting the potential of unlabeled endoscopic video data with self-supervised learning Int J Comput Assist Radiol Surg 23 869-875