Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation

被引:0
作者
Tommy Sonne Alstrøm
Mads Peter Sørensen
Niels Falsig Pedersen
Søren Madsen
机构
[1] Technical University of Denmark,Department of Informatics
[2] Technical University of Denmark,Department of Mathematics
[3] University of Southern Denmark,Mads Clausen Institute
来源
Acta Applicandae Mathematicae | 2011年 / 115卷
关键词
Type II superconductivity; Ginzburg-Landau equation; Vortex lattices; Giant vortices;
D O I
暂无
中图分类号
学科分类号
摘要
The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor.
引用
收藏
页码:63 / 74
页数:11
相关论文
共 55 条
[11]  
Du Q.(2004)The effect of surface defects on the vortex expulsion and penetration in mesoscopic superconducting disks Physica C 408–410 3609-1680
[12]  
Mu M.(2002)Fractional and negative flux penetration in mesoscopic superconducting disks Physica C 369 255-2723
[13]  
Gunter D.O.(2003)Vortex entry conditions in type-II superconductors. Effect of surface defects Physica C 384 1652-undefined
[14]  
Kaper H.G.(2005)Pinning effects and their breakdown for a Ginzburg Landau model with normal inclusions J. Math. Phys. 46 2716-undefined
[15]  
Leaf G.K.(2005)Giant vortex state in mesoscopic superconductors Phys. Stat. Sol. (c) 2 undefined-undefined
[16]  
Chibotaru L.F.(2000)Vortex matter in mesoscopic superconducting disks and rings Physica C 332 undefined-undefined
[17]  
Ceulemans A.(2006)Temperature-dependent vortex motion in a square mesoscopic superconducting cylinder: Ginzburg-Landau calculations Phys. Rev. B 74 undefined-undefined
[18]  
Geim A.K.(1978)Perturbation analysis of fluxon dynamics Phys. Rev. A 18 undefined-undefined
[19]  
Grigorieva I.V.(1994)Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity Appl. Anal. 53 undefined-undefined
[20]  
Dubonos S.V.(undefined)undefined undefined undefined undefined-undefined