Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation

被引:0
作者
Tommy Sonne Alstrøm
Mads Peter Sørensen
Niels Falsig Pedersen
Søren Madsen
机构
[1] Technical University of Denmark,Department of Informatics
[2] Technical University of Denmark,Department of Mathematics
[3] University of Southern Denmark,Mads Clausen Institute
来源
Acta Applicandae Mathematicae | 2011年 / 115卷
关键词
Type II superconductivity; Ginzburg-Landau equation; Vortex lattices; Giant vortices;
D O I
暂无
中图分类号
学科分类号
摘要
The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor.
引用
收藏
页码:63 / 74
页数:11
相关论文
共 55 条
[1]  
Ginzburg V.L.(1950)On the theory of superconductivity Zh. Eksp. Teor. Fiz. 20 1064-266
[2]  
Landau L.D.(1968)Generalization of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities Sov. Phys. (JETP) 27 328-1039
[3]  
Gorkov L.P.(1996)Numerical simulations of vortex dynamics in Type-II superconductors J. Comput. Phys. 123 254-1958
[4]  
Eliashburg G.M.(2005)Numerical approximations of the Ginzburg-Landau models for superconductivity J. Math. Phys. 46 1028-452
[5]  
Gropp W.D.(1997)A linearized Crank-Nicolson-Galerkin method for the Ginzburg-Landau model SIAM J. Sci. Comput. 18 1943-440
[6]  
Kaper H.G.(2002)Implicit integration of the time-dependent Ginzburg-Landau equations of superconductivity SIAM J. Sci. Comput. 23 445-544
[7]  
Leaf G.K.(2005)Ginzburg-Landau description of confinement and quantization effects in mesoscopic superconductors J. Math. Phys. 46 432-164
[8]  
Levine D.M.(1998)Mesoscopic superconductors as ‘artificial atoms’ made from Cooper pairs Physica B 249–251 543-226
[9]  
Palumbo M.(2005)Surface barrier for flux entry and exit in mesoscopic superconducting systems J. Math. Phys. 46 158-3612
[10]  
Vinokur V.M.(2005)Domain walls and textured vortices in a two-component Ginzburg Landau model Phys. Lett. A 344 211-262