Topological fixed point theorems do not hold for random dynamical systems

被引:0
作者
Ochs G. [1 ]
Oseledets V.I. [2 ]
机构
[1] Institut für Dynamische Systeme, Universität Bremen, 28334 Bremen
[2] Department of Mechanics and Mathematics, Moscow State University
关键词
Cocyele; Fixed point theorem; Invariant measure; Random dynamical system;
D O I
10.1023/A:1022670227876
中图分类号
学科分类号
摘要
The aim of this paper is to demonstrate that topological fixed point theorems have no canonical generalization to the case of random dynamical systems. This is done by using tools from algebraic ergodic theory. We give a criterion for the existence of invariant probability measures for group valued cocyeles. With that, examples of continuous random dynamical systems on a compact interval without random invariant points, which are an appropriate generali/ation of fixed points, are constructed. © 1999 Plenum Publishing Corporation.
引用
收藏
页码:583 / 593
页数:10
相关论文
共 13 条
[1]  
Arnold L., Random Dynamical Systems, (1998)
[2]  
Arnold L., Random dynamical systems, Lecture Notes Math., 1609, pp. 1-43, (1995)
[3]  
Arnold L., Boxler P., Additive noise turns a hyperbolic fixed point into a stationary solution, Lecture Notes Math., 486, pp. 159-164, (1991)
[4]  
Crauel H., Random Probability Measures on Polish Spaces, (1995)
[5]  
Keynes H.B., Newton D., The structure of ergodic measures for compact group extensions, Israel J. Math., 18, pp. 363-389, (1974)
[6]  
Knill O., The upper Lyapunov exponents of SL(2, ℝ) cocycles: Discontinuity and the problem of positivity, Lecture Notes Math., 1486, pp. 86-97, (1991)
[7]  
Liu P.-D., Random perturbations of Axiom A basic sets, J. Stat. Phys., 90, pp. 467-490, (1988)
[8]  
Ochs G., Examples of random dynamical systems without random fixed points, Universitatis Lagellonicae Ada Mathematics, Fasc., 36, pp. 133-141, (1998)
[9]  
Parthasarathy K.R., Probability Measures on Metric Spaces, (1967)
[10]  
Schmalfuss B., A random fixed point theorem based on Lyapunov exponents, Rand. Comp. Dyn., 4, pp. 267-268, (1996)