Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {{\mathcal {H}}_{p}}$$\end{document}-Theory of General Dirichlet Series

被引:0
作者
Andreas Defant
Ingo Schoolmann
机构
[1] Carl von Ossietzky Universität,Institut für Mathematik
关键词
General Dirichlet series; Hardy spaces; Bohr compactification; Primary 43A17; Secondary 30H10; 30B50;
D O I
10.1007/s00041-019-09701-0
中图分类号
学科分类号
摘要
Inspired by results of Bayart on ordinary Dirichlet series ∑ann-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum a_n n^{-s}$$\end{document}, the main purpose of this article is to start an Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_p$$\end{document}-theory of general Dirichlet series ∑ane-λns\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum a_n e^{-\lambda _{n}s}$$\end{document}. Whereas the Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_p$$\end{document}-theory of ordinary Dirichlet series, in view of an ingenious identification of Bohr, may be seen as a sub-theory of Fourier analysis on the infinite dimensional torus T∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}^\infty $$\end{document}, the Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_p$$\end{document}-theory of general Dirichlet series is build as a sub-theory of Fourier analysis on certain compact abelian groups, including the Bohr compactification R¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{{\mathbb {R}}}}$$\end{document} of the reals. Our approach allows to extend various important facts on Hardy spaces of ordinary Dirichlet series to the much wider setting of Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_p$$\end{document}-spaces of general Dirichlet series.
引用
收藏
页码:3220 / 3258
页数:38
相关论文
共 25 条
  • [1] Aleman A(2014)Fourier multipliers for Hardy spaces of Dirichlet series Int. Math. Res. Not. IMRN 16 4368-4378
  • [2] Olsen JF(2002)Hardy spaces of Dirichlet series and their compostion operators Monatsh. Math. 136 203-236
  • [3] Saksman E(1931)On the absolute convergence of Dirichlet series Ann. Math. 32 600-622
  • [4] Bayart F(1913)Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen Nachr. Ges. Wiss. Gött. Math. Phys. Kl. 4 441-488
  • [5] Bohnenblust HF(1913)Über die gleichmäßige Konvergenz Dirichletscher Reihen J. Reine Angew. Math. 143 203-211
  • [6] Hille E(1925)Zur Theorie der fastperiodischen Funktionen II Acta Math. 46 101-214
  • [7] Bohr H(2018)Banach spaces of general Dirichlet series J. Math. Anal. Appl. 465 839-856
  • [8] Bohr H(2018)Hardy spaces of vector-valued Dirichlet series Studia Math. 243 53-78
  • [9] Bohr H(1967)One the Fourier-Stieltjes transforms of singular or absolutely continuous measures Math. Z. 97 77-84
  • [10] Choi YS(1997)A Hilbert space of Dirichlet series and systems of dilated function in Duke Math. J. 86 1-37