Positive Solutions to Singular Semilinear Elliptic Problems

被引:0
作者
Khalifa El Mabrouk
机构
[1] Faculty of Sciences of Monastir,Department of Mathematics
来源
Positivity | 2006年 / 10卷
关键词
35J65; 35D05; 31C45; Singular semilinear problem; Greenian domain; Green function;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain a characterization of all locally bounded functions p ≥ 0 for which the equation (E) Δu +p(x)ψ(u) = 0 has a positive solution in Ω vanishing on the boundary, where Ω is a domain of ℝN and ψ > 0 is a nonincreasing continuous function on ]0,∞[. In particular, for Ω = ℝN with N ≥ 3, it is shown that (E) has a (unique) positive solution in ℝN which decays to zero at infinity if and only if the set {p > 0} has positive Lebesgue measure and
引用
收藏
页码:665 / 680
页数:15
相关论文
共 20 条
  • [1] Boukricha A.(1987)Continuous solutions of the generalized Schrödinger equation and perturbation of harmonic spaces Exposition. Math. 5 97-135
  • [2] Hansen W.(1992)A global estimate for the gradient in a singular elliptic boundary value problem Proc. Roy. Soc. Edinburgh Sect. A 122 341-352
  • [3] Hueber H.(2000)Solutions of semilinear differential equations related to harmonic functions J. Funct. Anal. 170 464-474
  • [4] del Pino M.A.(1989)Entire solutions of singular elliptic equations J. Math. Anal. Appl. 139 523-532
  • [5] Dynkin E.B.(2003)Semilinear perturbations of harmonic spaces, Liouville property and a boundary value problem Potential Anal. 19 35-50
  • [6] Edelson A.L.(2004)Entire bounded solutions for a class of sublinear elliptic equations Nonlinear Anal 58 205-218
  • [7] El Mabrouk K.(1998)A Liouville property for Schrödinger operators Math. Ann. 312 659-716
  • [8] El Mabrouk K.(1998)Solutions for a class of singular semilinear elliptic equations Nonlinear Anal. 31 475-492
  • [9] Grigor'yan A.(1985)Entire positive solutions of singular semilinear elliptic equations Japan. J. Math. (N.S.) 11 145-155
  • [10] Hansen W.(1996)Entire solution of a singular semilinear elliptic problem J. Math. Anal. Appl. 200 498-505