2D–EM clustering approach for high-dimensional data through folding feature vectors

被引:0
作者
Alok Sharma
Piotr J. Kamola
Tatsuhiko Tsunoda
机构
[1] Center for Integrative Medical Sciences,Institute for Integrated and Intelligent Systems
[2] RIKEN Yokohama,Medical Research Institute
[3] CREST,undefined
[4] JST,undefined
[5] Griffith University,undefined
[6] Tokyo Medical and Dental University,undefined
[7] School of Engineering and Physics,undefined
[8] University of the South Pacific,undefined
来源
BMC Bioinformatics | / 18卷
关键词
EM algorithm; Feature matrix; Small sample size; Transcriptome; Methylome; Cancer; Phenotype clustering;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 212 条
  • [1] Jain AK(2010)Data clustering: 50 years beyond K-means Pattern Recogn Lett 31 651-666
  • [2] Mo Q(2013)Pattern discovery and cancer gene identification in integrated cancer genomic data Proc Natl Acad Sci U S A 110 4245-4250
  • [3] Wang S(2003)Consensus clustering: a Resampling-based method for class discovery and visualization of gene expression microarray data Mach Learn 52 91-118
  • [4] Seshan VE(2010)ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking Bioinformatics 26 1572-1573
  • [5] Olshen AB(2016)Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer Nat Genet 48 500-179
  • [6] Schultz N(1996)Iterative optimization and simplification of hierarchical clusterings J Artif Intell Res 4 147-1217
  • [7] Sander C(2008)Bayesian and maximum likelihood estimation of hierarchical response time models Psychon Bull Rev 15 1209-122
  • [8] Powers RS(2017)Hierarchical maximum likelihood clustering approach IEEE Trans Biomed Eng 64 112-34
  • [9] Ladanyi M(1973)SLINK: an optimally efficient algorithm for the single-link cluster method Comput J (British Computer Society) 16 30-366
  • [10] Shen R(1977)An efficient algorithm for a complete link method Comput J (British Computer Society) 20 364-62