Dendritic Growth in an Aluminum-Silicon Alloy

被引:0
作者
H. Kaya
E. Çadırlı
M. Gündüz
机构
[1] Niğde University,Department of Physics, Faculty of Arts and Sciences
[2] Erciyes University,Department of Physics, Faculty of Arts and Sciences
来源
Journal of Materials Engineering and Performance | 2007年 / 16卷
关键词
Al-Si alloy; directional solidification; dendritic growth; microstructures;
D O I
暂无
中图分类号
学科分类号
摘要
Unidirectional solidification experiments have been carried out on an Al-3 wt.% Si alloy as a function of temperature gradient, G and growth rate, V. The samples were solidified under steady-state conditions with a constant growth rate of 8.20 μm/s at different temperature gradients (1.97-6.84 K/mm) and with a constant temperature gradient (6.84 K/mm) at different growth rates (8.20-492.76 μm/s). Microstructure parameters (primary dendrite arm spacing, λ1, secondary dendrite arm spacing, λ2, dendrite tip radius, R and mushy zone depth, d) were measured as a function of temperature gradient and growth rate. The experimental results have been compared with the current theoretical models and similar experimental works.
引用
收藏
页码:12 / 21
页数:9
相关论文
共 50 条
[31]   Influence of Dendritic Growth of Equiaxed Grains on As-Cast Grain Size Prediction of Inoculated Aluminum Alloys [J].
Xu, Yijiang ;
Du, Qiang ;
Li, Yanjun .
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2015, 68 (06) :1013-1016
[32]   Ordered stacking faults within nanosized silicon precipitates in aluminum alloy [J].
Xie, Dong Yue ;
Yan, Jiawei ;
Li, Yangxin ;
Qiu, Dong ;
Wu, Guilin ;
Wang, Xiaodong ;
Chen, Bin ;
Shen, Yao ;
Zhu, Guo-zhen .
MATERIALS LETTERS, 2017, 190 :225-228
[33]   Metallothermic Production of Aluminum-Strontium Master Alloy for Modification of Silicon [J].
Sezer, Rasit ;
Hizli, Goksel ;
Bilen, Aysegul ;
Erturk, Selim ;
Dispinar, Derya ;
Arslan, Cuneyt .
METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2020, 9 (06) :833-840
[34]   Phase field lattice Boltzmann model for non-dendritic structure formation in aluminum alloy from LSPSF machine [J].
Yu, An-shan ;
Yang, Xiang-jie ;
Guo, Hong-min .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2020, 30 (03) :559-570
[35]   Three-dimensional dendritic needle network model for alloy solidification [J].
Tourret, D. ;
Karma, A. .
ACTA MATERIALIA, 2016, 120 :240-254
[36]   Effect of Compound Modification on Microstructure and Properties of High Silicon Aluminum Alloy [J].
Liu, Niucan ;
Kang, Guangsheng ;
Liu, Zhongxia .
NEW MATERIALS AND PROCESSES, PTS 1-3, 2012, 476-478 :114-+
[37]   Modelling of dendritic growth during alloy solidification under natural convection [J].
Zhu, Mingfang ;
Sun, Dongke ;
Pan, Shiyan ;
Zhang, Qingyu ;
Raabe, Dierk .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2014, 22 (03)
[38]   Numerical simulation for isothermal dendritic growth of succinonitrile-acetone alloy [J].
陈志 ;
陈长乐 ;
郝丽梅 .
TransactionsofNonferrousMetalsSocietyofChina, 2008, (03) :654-659
[39]   Numerical simulation for isothermal dendritic growth of succinonitrile-acetone alloy [J].
Chen Zhi ;
Chen Chang-le ;
Hao Li-Mei .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2008, 18 (03) :654-659
[40]   SOLUTION OF DENDRITIC GROWTH IN A BINARY ALLOY BY A NOVEL POINT AUTOMATA METHOD [J].
Lorbiecka, A. Z. ;
Sarler, B. .
COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING IV, 2011, :1220-1231