Singular Riemann-Hilbert problem in complex-shaped domains

被引:1
作者
S. I. Bezrodnykh
V. I. Vlasov
机构
[1] Russian Academy of Sciences,Dorodnicyn Computing Center
[2] Moscow State University,Sternberg Astronomical Institute
来源
Computational Mathematics and Mathematical Physics | 2014年 / 54卷
关键词
Riemann-Hilbert problem; Cauchy-type integral; conformal mappings; Schwarz-Christoffel integral; hypergeometric functions;
D O I
暂无
中图分类号
学科分类号
摘要
In simply connected complex-shaped domains ℬ a Riemann-Hilbert problem with discontinuous data and growth condidions of a solution at some points of the boundary is considered. The desired analytic function ℱ(z) is represented as the composition of a conformal mapping of ℬ onto the half-plane \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H}^ + $\end{document} and the solution ℘ of the corresponding Riemann-Hilbert problem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H}^ + $\end{document}. Methods for finding this mapping are described, and a technique for constructing an analytic function ℘+ in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H}^ + $\end{document} in the terms of a modified Cauchy-type integral. In the case of piecewise constant data of the problem, a fundamentally new representation of ℘+ in the form of a Christoffel-Schwarz-type integral is obtained, which solves the Riemann problem of a geometric interpretation of the solution and is more convenient for numerical implementation than the conventional representation in terms of Cauchytype integrals.
引用
收藏
页码:1826 / 1875
页数:49
相关论文
共 100 条
[21]  
Zverovich E I(1996)A function theory method in elliptic problems in the plane. II: The piecewise smooth case J. Nonlinear Anal. Theory Methods Appl. 27 37-58
[22]  
Pal’tsev B V(2002)Nonlinear Riemann-Hilbert problem for multiply connected domains Differ. Equations 38 855-864
[23]  
Pal’tsev B V(2003)Weighted Hardy classes of analytic functions Izv. Math. 67 695-779
[24]  
Soldatov A P(1953)Asymptotic behavior of the spectra of integral convolution operators on a finite interval with homogeneous polar kernel Prikl. Mat. Mekh. 17 685-692
[25]  
Efendiev M A(1945)Relation between the fundamental elasticity problem and a special case of the Poincaré problem Prikl. Mat. Mekh. 9 143-150
[26]  
Wendland W L(1958)On Prandtl’s integro-differential equation Indagationes Math. 61 278-297
[27]  
Soldatov A P(1965)The drag on a vibrating aerofoil in incompressible flow I, II Math. Nachr. 32 161-178
[28]  
Pal’tsev B V(1954)Abelsche integralgleichungen und Randwertprobleme für die verallgemeinerte Tricomi-Gleichung J. Appl. Phys. 25 731-756
[29]  
Sherman D I(1982)Solution of the field problem of the germanium gyrator J. Appl. Phys. 53 4980-4986
[30]  
Vekua I N(1986)The geometrical correction factor for a rectangular Hall plate J. Comput. Appl. Math. 14 227-249