Singular Riemann-Hilbert problem in complex-shaped domains

被引:1
作者
S. I. Bezrodnykh
V. I. Vlasov
机构
[1] Russian Academy of Sciences,Dorodnicyn Computing Center
[2] Moscow State University,Sternberg Astronomical Institute
来源
Computational Mathematics and Mathematical Physics | 2014年 / 54卷
关键词
Riemann-Hilbert problem; Cauchy-type integral; conformal mappings; Schwarz-Christoffel integral; hypergeometric functions;
D O I
暂无
中图分类号
学科分类号
摘要
In simply connected complex-shaped domains ℬ a Riemann-Hilbert problem with discontinuous data and growth condidions of a solution at some points of the boundary is considered. The desired analytic function ℱ(z) is represented as the composition of a conformal mapping of ℬ onto the half-plane \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H}^ + $\end{document} and the solution ℘ of the corresponding Riemann-Hilbert problem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H}^ + $\end{document}. Methods for finding this mapping are described, and a technique for constructing an analytic function ℘+ in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{H}^ + $\end{document} in the terms of a modified Cauchy-type integral. In the case of piecewise constant data of the problem, a fundamentally new representation of ℘+ in the form of a Christoffel-Schwarz-type integral is obtained, which solves the Riemann problem of a geometric interpretation of the solution and is more convenient for numerical implementation than the conventional representation in terms of Cauchytype integrals.
引用
收藏
页码:1826 / 1875
页数:49
相关论文
共 100 条
[1]  
Volterra V(1883)Sopra alcune condizioni caratteristiche delle funzioni di una variabile complessa Ann. Math. Pura Appl. 11 1-55
[2]  
Plemelj J(1908)Riemannshe funktionenscharen mit gegebener Monodromie-gruppe Monatsh. Math. Phys. 19 205-210
[3]  
Noether F(1921)Über eine Klasse singulärer Intergralgleichungen Math. Ann. 82 42-63
[4]  
Garleman T(1922)Sur la résolution de certaines équations intégrals Ark. Math. Astron. Phys. 16 1-19
[5]  
Gakhov F D(1937)On the Riemann boundary value problem Mat. Sb. 2 673-683
[6]  
Gakhov F D(1938)Linear boundary value problems in the theory of functions of a complex variable Izv. Kazan. Fiz-Mat. Ob-va, Nauchno-Issled. Inst. Mat. Mekh. Kazan. Univ., Ser. 3 10 39-79
[7]  
Giraud G(1939)Sur une classe d’équations linéaires o figurant des valeurs principales d’intégrales simples Ann. Sci. Ecolé Norm. Supér., Sér. 3 56 119-172
[8]  
Gakhov F D(1949)Boundary value problems in the theory of analytic functions and singular integral equations—Doctoral dissertation, Tbilisi, 1941 Izv. Kazan. Fiz-Mat. Ob-va, Ser. 3 14 75-160
[9]  
Muskhelishvili N I(1942)Singular integral equations with Cauchy-type kernels on unclosed contours Tr. Tbilis. Mat. Inst. Akad. Nauk Gruz. SSR 11 141-172
[10]  
Kveselava D A(1943)Riemann boundary value problem for several unknown functions and its applications to systems of singular integral equations Tr. Tbilis. Mat. Inst. Akad. Nauk Gruz. SSR 12 1-46