Effects of poly(L-lactide-e-caprolactone) and magnesium hydroxide additives on physico-mechanical properties and degradation of poly(L-lactic acid)

被引:25
|
作者
Kang E.Y. [1 ,2 ]
Lih E. [1 ]
Kim I.H. [2 ]
Joung Y.K. [1 ,3 ]
Han D.K. [1 ,3 ]
机构
[1] Center for Biomaterials, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul
[2] Department of Biological Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul
[3] Department of Biomedical Engineering, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon
关键词
Magnesium hydroxide; Neutralization; Poly(L-lactic acid); Poly(L-lactide-e-caprolactone); Thermal decomposition;
D O I
10.1186/s40824-016-0054-6
中图分类号
学科分类号
摘要
Background: Biodegradable poly(L-lactic acid) (PLLA) is one of the most widely used polymer in biomedical devices, but it still has limitations such as inherent brittleness and acidic degradation products. In this work, PLLA blends with poly(L-lactide-e-caprolactone) (PLCL) and Mg(OH)2 were prepared by the thermal processing to improve their physico-mechanical and thermal properties. In addition, the neutralizing effect of Mg(OH)2 was evaluated by degradation study. Results: The elongation of PLLA remarkably increased from 3 to 164.4 % and the glass transition temperature (Tg) of PLLA was slightly reduced from 61 to 52 °C by adding PLCL additive. Mg(OH)2 in polymeric matrix not only improved the molecular weight reduction and mechanical strength of PLLA, but also neutralized the acidic byproducts generated during polyester degradation. Conclusions: Therefore, the results demonstrated that the presence of PLCL and Mg(OH)2 additives in PLLA matrix could prevent the thermal decomposition and control degradation behavior of polyester. © 2016 Kang et al.
引用
收藏
相关论文
共 50 条
  • [1] Structure and mechanical properties of poly(D,L-lactic acid)/poly(ε-caprolactone) blends
    Broz, ME
    VanderHart, DL
    Washburn, NR
    BIOMATERIALS, 2003, 24 (23) : 4181 - 4190
  • [2] Thermo-mechanical properties of poly ε-caprolactone/poly L-lactic acid blends: Addition of nalidixic acid and polyethylene glycol additives
    Douglas, P.
    Albadarin, Ahmad B.
    Al-Muhtaseb, Ala'a H.
    Mangwandi, Chirangano
    Walkera, G. M.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2015, 45 : 154 - 165
  • [3] Enzymatic degradation of biodegradable polyester composites of Poly(L-lactic acid) and poly(ε-caprolactone)
    Tsuji, Hideto
    Kidokoro, Yuki
    Mochizuki, Masatusgu
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2006, 291 (10) : 1245 - 1254
  • [4] Effects of particle size on marine biodegradation of poly(L-lactic acid) and poly(e-caprolactone)
    Hino, Shodai
    Kawasaki, Norioki
    Yamano, Naoko
    Nakamura, Tsutomu
    Nakayama, Atsuyoshi
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 303
  • [5] The preparation and biodegradable properties of poly(L-lactic acid)-poly(ε-caprolactone) multiblock copolymers
    Teng, Cuiqing
    Xu, Hong
    Yang, Kai
    Yu, Muhuo
    JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2006, 43 (11): : 1877 - 1886
  • [6] Effect of Poly(ε-caprolactone) on the Crystallization Behavior of Poly(L-lactic acid)
    Xiao W.
    Chen W.
    Luo C.
    Yang M.
    Tang F.
    Yang J.
    Zhou H.
    Qiang T.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2019, 35 (06): : 45 - 53
  • [7] Effects of mechanical load on the degradation of poly(D,L-lactic acid) foam
    Fan, Yu-Bo
    Li, Ping
    Zeng, Li
    Huang, Xue-Jin
    POLYMER DEGRADATION AND STABILITY, 2008, 93 (03) : 677 - 683
  • [8] Crystallization behavior of plasticized poly(lactide) film by poly(l-lactic acid)-poly(ethylene glycol)-poly(l-lactic acid) triblock copolymer
    Jariyasakoolroj, Piyawanee
    Rojanaton, Nattapon
    Jarupan, Lerpong
    POLYMER BULLETIN, 2020, 77 (05) : 2309 - 2323
  • [9] Crystallization behavior of plasticized poly(lactide) film by poly(l-lactic acid)-poly(ethylene glycol)-poly(l-lactic acid) triblock copolymer
    Piyawanee Jariyasakoolroj
    Nattapon Rojanaton
    Lerpong Jarupan
    Polymer Bulletin, 2020, 77 : 2309 - 2323
  • [10] Compressive mechanical properties and deformation behavior of porous polymer blends of poly(ε-caprolactone) and poly(l-lactic acid)
    Park, Joo-Eon
    Todo, Mitsugu
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (24) : 7850 - 7857