Global Boundary Regularity for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline\partial}$$\end{document}-problem on Strictly q-convex and q-concave Domains

被引:0
作者
Sayed Saber
机构
[1] Beni-Suef University,Mathematics Department, Faculty of Science
关键词
-convexity and ; -concavity; -problem; K; hler manifolds; 32W05; 32F10; 32Q15; 32W10;
D O I
10.1007/s11785-010-0114-1
中图分类号
学科分类号
摘要
We prove the boundary global regularity of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline\partial}$$\end{document}-operator on strictly q-convex and q-concave domains in Kähler manifolds. Applications to the solvability of the tangential Cauchy–Riemann equations for smooth forms on boundaries of such domains are given.
引用
收藏
页码:1157 / 1165
页数:8
相关论文
共 20 条
  • [1] Heungju A.(2005)Global boundary regularity for the Rend. Mat. Acc. Lincei 16 5-9
  • [2] Calabi E.(1960)-equation on Ann. Math. 71 472-507
  • [3] Vesentini E.(1969)-pseudoconvex domains Math. USSR Sb. 7 579-616
  • [4] Henkin G.M.(2000)On compact, locally symmetric K Asian J. Math. 4 855-884
  • [5] Henkin G.M.(2000)hler manifolds Compositio Math. 121 155-162
  • [6] Iordan A.(1970)Integral representation of functions in strictly pseudoconvex domains and applications to the Rice Univ. Studies 56 29-50
  • [7] Zampieri G.(1965)-problem Ann. Math. 81 451-472
  • [8] Grauert H.(1973)Regularity of Trans. Am. Math. Soc. 181 273-292
  • [9] Lieb I.(1977) on pseudococave compacts and applications Proc. Symp. Pure Math. 30 215-237
  • [10] Kohn J.J.(2005)-pseudoconvexity and regularity at the boundary for solutions of the J. Anal. Math. 95 45-61