3D Rectangulations and Geometric Matrix Multiplication

被引:0
作者
Peter Floderus
Jesper Jansson
Christos Levcopoulos
Andrzej Lingas
Dzmitry Sledneu
机构
[1] Lund University,Centre for Mathematical Sciences
[2] Kyoto University,Laboratory of Mathematical Bioinformatics, Institute for Chemical Research
[3] Lund University,Department of Computer Science
来源
Algorithmica | 2018年 / 80卷
关键词
Decomposition problem; Minimum rectangulation; Orthogonal polyhedron; Matrix multiplication; Time complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of partitioning an orthogonal polyhedron P into a minimum number of 3D rectangles is known to be NP-hard. In this paper, we first develop a 4-approximation algorithm for the special case of the problem in which P is a 3D histogram. It runs in O(mlogm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m \log m)$$\end{document} time, where m is the number of corners in P. We then apply it to exactly compute the arithmetic matrix product of two n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} matrices A and B with nonnegative integer entries, yielding a method for computing A×B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \times B$$\end{document} in O~(n2+min{rArB,nmin{rA,rB}})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(n^2 + \min \{ r_A r_B,\, n \min \{r_A,\ r_B\}\})$$\end{document} time, where O~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}$$\end{document} suppresses polylogarithmic (in n) factors and where rA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_A$$\end{document} and rB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_B$$\end{document} denote the minimum number of 3D rectangles into which the 3D histograms induced by A and B can be partitioned, respectively.
引用
收藏
页码:136 / 154
页数:18
相关论文
共 5 条
  • [1] Bansal N(2012)Regularity lemmas and combinatorial algorithms Theory Comput. 8 69-94
  • [2] Williams R(1991)Rectangular partition is polynomial in two dimensions but NP-complete in three Inf. Process. Lett. 38 1-6
  • [3] Dielissen VJ(1983)Finding a Manhattan path and related problems Networks 13 399-409
  • [4] Kaldewaij A(undefined)undefined undefined undefined undefined-undefined
  • [5] Lipski W(undefined)undefined undefined undefined undefined-undefined