3D Rectangulations and Geometric Matrix Multiplication

被引:0
|
作者
Peter Floderus
Jesper Jansson
Christos Levcopoulos
Andrzej Lingas
Dzmitry Sledneu
机构
[1] Lund University,Centre for Mathematical Sciences
[2] Kyoto University,Laboratory of Mathematical Bioinformatics, Institute for Chemical Research
[3] Lund University,Department of Computer Science
来源
Algorithmica | 2018年 / 80卷
关键词
Decomposition problem; Minimum rectangulation; Orthogonal polyhedron; Matrix multiplication; Time complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of partitioning an orthogonal polyhedron P into a minimum number of 3D rectangles is known to be NP-hard. In this paper, we first develop a 4-approximation algorithm for the special case of the problem in which P is a 3D histogram. It runs in O(mlogm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m \log m)$$\end{document} time, where m is the number of corners in P. We then apply it to exactly compute the arithmetic matrix product of two n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} matrices A and B with nonnegative integer entries, yielding a method for computing A×B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \times B$$\end{document} in O~(n2+min{rArB,nmin{rA,rB}})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(n^2 + \min \{ r_A r_B,\, n \min \{r_A,\ r_B\}\})$$\end{document} time, where O~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}$$\end{document} suppresses polylogarithmic (in n) factors and where rA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_A$$\end{document} and rB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_B$$\end{document} denote the minimum number of 3D rectangles into which the 3D histograms induced by A and B can be partitioned, respectively.
引用
收藏
页码:136 / 154
页数:18
相关论文
共 50 条
  • [1] 3D Rectangulations and Geometric Matrix Multiplication
    Floderus, Peter
    Jansson, Jesper
    Levcopoulos, Christos
    Lingas, Andrzej
    Sledneu, Dzmitry
    ALGORITHMICA, 2018, 80 (01) : 136 - 154
  • [2] 3D Rectangulations and Geometric Matrix Multiplication
    Floderus, Peter
    Jansson, Jesper
    Levcopoulos, Christos
    Lingas, Andrzej
    Sledneu, Dzmitry
    ALGORITHMS AND COMPUTATION, ISAAC 2014, 2014, 8889 : 65 - 78
  • [3] 2D matrix multiplication on a 3D systolic array
    Lakhani, S
    Wang, Y
    Milenkovic, A
    Milutinovic, V
    MICROELECTRONICS JOURNAL, 1996, 27 (01) : 11 - 22
  • [4] Performance Modeling of Matrix Multiplication on 3D Memory Integrated FPGA
    Singapura, Shreyas G.
    Panangadan, Anand
    Prasanna, Viktor K.
    2015 IEEE 29TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, 2015, : 154 - 162
  • [5] Geometric aspects of Iterated Matrix Multiplication
    Gesmundo, Fulvio
    JOURNAL OF ALGEBRA, 2016, 461 : 42 - 64
  • [6] A geometric approach to Boolean matrix multiplication
    Lingas, A
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2002, 2518 : 501 - 510
  • [7] 3D Coded SUMMA: Communication-Efficient and Robust Parallel Matrix Multiplication
    Jeong, Haewon
    Yang, Yaoqing
    Gupta, Vipul
    Engelmann, Christian
    Low, Tze Meng
    Cadambe, Viveck
    Ramchandran, Kannan
    Grover, Pulkit
    EURO-PAR 2020: PARALLEL PROCESSING, 2020, 12247 : 392 - 407
  • [8] Geometric Rank of Tensors and Subrank of Matrix Multiplication
    Kopparty, Swastik
    Moshkovitz, Guy
    Zuiddam, Jeroen
    DISCRETE ANALYSIS, 2023, : 1 - 25
  • [9] Fast 3D Block Parallelisation for the Matrix Multiplication Prefix Problem Application in Quantum Control
    Waldherr, K.
    Huckle, T.
    Auckenthaler, T.
    Sander, U.
    Schulte-Herbrueggen, T.
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, GARCHING/MUNICH 2009: TRANSACTIONS OF THE FOURTH JOINT HLRB AND KONWIHR REVIEW AND RESULTS WORKSHOP, 2010, : 39 - +
  • [10] Estimation of Geometric Parameters in 3D Reconstruction Problems Using Linear Matrix Inequalities
    Ito, Yoshimichi
    Irie, Katsumi
    Otsuka, Shun
    2014 JOINT 7TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 15TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2014, : 723 - 726