Long-time asymptotics of axisymmetric Navier–Stokes equations in critical spaces

被引:0
|
作者
Yanlin Liu
机构
[1] Beijing Normal University,School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, MOE
关键词
35Q30; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that any global strong solution to axisymmetric Navier–Stokes equations must eventually become small. In particular, the limits of ‖ωθ(t)/r‖L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \omega ^\theta (t)/r\Vert _{L^1}$$\end{document} and ‖uθ(t)/r‖L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert u^\theta (t)/\sqrt{r}\Vert _{L^2}$$\end{document} are all 0 as t tends to infinity. Then by using these, we can refine a series of decay estimates. In particular, for the global axisymmetric solutions we know till now, namely the axisymmetric without swirl or with small swirl ones, these decay estimates hold. But our result here do not require any smallness conditions beforehand, thus more general.
引用
收藏
相关论文
共 50 条