Ising Correlations and Elliptic Determinants

被引:0
作者
N. Iorgov
O. Lisovyy
机构
[1] Bogolyubov Institute for Theoretical Physics,Laboratoire de Mathématiques et Physique Théorique CNRS/UMR 6083
[2] Max-Planck-Institut für Mathematik,undefined
[3] Université de Tours,undefined
[4] Parc de Grandmont,undefined
来源
Journal of Statistical Physics | 2011年 / 143卷
关键词
Ising model; Form factor; Elliptic determinant;
D O I
暂无
中图分类号
学科分类号
摘要
Correlation functions of the two-dimensional Ising model on the periodic lattice can be expressed in terms of form factors—matrix elements of the spin operator in the basis of common eigenstates of the transfer matrix and translation operator. Free-fermion structure of the model implies that any multiparticle form factor is given by the pfaffian of a matrix constructed from the two-particle ones. Crossed two-particle form factors can be obtained by inverting a block of the matrix of linear transformation induced on fermions by the spin conjugation. We show that the corresponding matrix is of elliptic Cauchy type and use this observation to solve the inversion problem explicitly. Non-crossed two-particle form factors are then obtained using theta functional interpolation formulas. This gives a new simple proof of the factorized formulas for periodic Ising form factors, conjectured by A. Bugrij and one of the authors.
引用
收藏
页码:33 / 59
页数:26
相关论文
共 51 条
[21]  
Iorgov N.(1980)Two-dimensional Ising correlations: convergence of the scaling limit Publ. RIMS, Kyoto Univ. 16 undefined-undefined
[22]  
Pakuliak S.(2008)An Izergin-Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices Russ. Math. Surv. 63 undefined-undefined
[23]  
Shadura V.(1952)Holonomic quantum fields V Phys. Rev. 85 undefined-undefined
[24]  
Tykhyy Yu.(undefined)Essays on the theory of elliptic hypergeometric functions undefined undefined undefined-undefined
[25]  
von Gehlen G.(undefined)The spontaneous magnetization of a two-dimensional Ising model undefined undefined undefined-undefined
[26]  
Kaufman B.(undefined)undefined undefined undefined undefined-undefined
[27]  
Kitanine N.(undefined)undefined undefined undefined undefined-undefined
[28]  
Maillet J.M.(undefined)undefined undefined undefined undefined-undefined
[29]  
Terras V.(undefined)undefined undefined undefined undefined-undefined
[30]  
Lisovyy O.(undefined)undefined undefined undefined undefined-undefined