Numerical analysis of relaxed micromagnetics by penalised finite elements

被引:25
作者
Carstensen C. [1 ]
Prohl A. [1 ]
机构
[1] Mathematisches Seminar, Chrstn.-Albrechts-Univ. zu Kiel, 24098 Kiel
关键词
Mathematics Subject Classification (1991): 64M07, 65K10, 65N30, 73C50, 73S10, 65N15, 65N30, 65N50;
D O I
10.1007/s002110100268
中图分类号
学科分类号
摘要
Some micromagnetic phenomena in rigid (ferro-)magnetic materials can be modelled by a non-convex minimisation problem. Typically, minimising sequences develop finer and finer oscillations and their weak limits do not attain the infimal energy. Solutions exist in a generalised sense and the observed microstructure can be described in terms of Young measures. A relaxation by convexifying the energy density resolves the essential macroscopic information. The numerical analysis of the relaxed problem faces convex but degenerated energy functionals in a setting similar to mixed finite element formulations. The lowest order conforming finite element schemes appear instable and nonconforming finite element methods are proposed. An a priori and a posteriori error analysis is presented for a penalised version of the side-restriction that the modulus of the magnetic field is bounded pointwise. Residual-based adaptive algorithms are proposed and experimentally shown to be efficient.
引用
收藏
页码:65 / 99
页数:34
相关论文
共 23 条
[1]  
Alberty J., Carstensen C., Funken S.A., Remarks around 50 lines of matlab: Finite element implementation, Numerical Algorithms (1999) Accepted, and: Berichtsreihe des Mathematischen Seminars Kiel, 98, 11, (1998)
[2]  
Arnold D.N., Falk R.S., A uniformly accurate finite element method for the Mindlin-Reissner plate, SIAM J. Numer. Anal., 26, pp. 1276-1290, (1989)
[3]  
Brezzi F., Bathe K.-J., Fortin M., Mixed-interpolated elements for Reissner-Mindlin plates, Int. J. Num. Meth. Eng., 28, pp. 1787-1801, (1989)
[4]  
Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, (1991)
[5]  
Brenner S.C., Scott L.R., The mathematical theory of finite element methods, Texts in Applied Mathematics, 15, (1994)
[6]  
Brown W.F., Micromagnetics, Interscience, (1963)
[7]  
Carstensen C., Plechac P., Numerical solution of the scalar double-well problem allowing microstructure, Math. Comp., 66, pp. 997-1026, (1997)
[8]  
Carstensen C., Plechac P., Numerical analysis of compatible phase transitions in elastic solids, SIAM J. Numer. Anal., 37, pp. 2061-2081, (2000)
[9]  
Clement P., Approximation by finite element functions using local regularization, Sér. Rouge Anal. Numér. (RAIRO), R-2, pp. 77-84, (1975)
[10]  
Dacorogna B., Direct methods in the calculus of variations, Applied Math. Sciences, 78, (1989)