On the (x,t) asymptotic properties of solutions of the Navier-Stokes equations in the half-space

被引:0
作者
Crispo F. [1 ]
Maremonti P. [1 ]
机构
[1] Dipartimento di Matematica, Seconda Università degli Studi di Napoli
关键词
Initial Data; Asymptotic Behavior; Classical Solution; Asymptotic Property; Space Variable;
D O I
10.1007/s10958-006-0197-4
中图分类号
学科分类号
摘要
We study the space-time asymptotic behavior of classical solutions of the initial-boundary value problem for the Navier-Stokes system in the half-space. We construct a (local in time) solution corresponding to an initial data that is only assumed to be continuous and decreasing at infinity as |x| -μ, μ ∈(1/2,n). We prove pointwise estimates in the space variable. Moreover, if μ ∈[1, n) and the initial data is suitably small, then the above solutions are global (in time), and we prove space-time pointwise estimates. Bibliography: 19 titles. © 2006 Springer Science+Business Media, Inc.
引用
收藏
页码:3735 / 3767
页数:32
相关论文
共 19 条
[11]  
Miranda C., Istituzioni di Analisi Punzionale Lineare, (1978)
[12]  
Miyakawa T., Notes on space-time decay properties of nonstationary incompressible Navier-Stokes flows in ℝ<sup>n</sup>, Funkcial. Ekvac, 45, pp. 271-289, (2002)
[13]  
Mizumachi R., On the asymptotic behavior of incompressible viscous fluid motions past bodies, J. Math. Soc. Japan, 36, pp. 497-522, (1984)
[14]  
Oseen C.W., Sur les formules de Green généralisées qui se presentent dans l'hydrodynamique et sur quelquesunes de leurs applications, Acta Math., 34, pp. 205-284, (1910)
[15]  
Oseen C.W., Neuere Methoden und Ergebnisse in der Hydrodynamik, (1927)
[16]  
Solonnikov V.A., Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math., 8, pp. 467-528, (1977)
[17]  
Solonnikov V.A., Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator, Usp. Mat. Nauk, 58, pp. 123-156, (2003)
[18]  
Solonnikov V.A., On nonstationary Stokes problem and Navier-Stokes problem in a half-space with initial data nondecreasing at infinity, J. Math. Sci., 114, pp. 1726-1740, (2003)
[19]  
Ukai S., A solution formula for the Stokes equation in ℝ<sub>+</sub> <sup>n</sup>, Comm. Pure Appl. Math., 40, pp. 611-621, (1987)