Boundedness of singular integrals along surfaces on Lebesgue spaces

被引:0
作者
Yan-dan Zhang
Jie-cheng Chen
Chun-jie Zhang
机构
[1] Zhejiang University of Technology,Department of Mathematics
[2] Zhejiang University,Department of Mathematics
[3] Hangzhou Dianzi University,College of Science
来源
Applied Mathematics-A Journal of Chinese Universities | 2010年 / 25卷
关键词
Singular integrals; surfaces; rough kernels; Plancherel’s theorem; oscillatory singular integrals; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, we establish the Lp(ℝn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution “(y, γ (|y|), y ∈ ℝn” with rough kernels. We also give several applications of this inequality.
引用
收藏
页码:192 / 198
页数:6
相关论文
共 30 条
[1]  
Al-salman A.(2002) log J London Math Soc 66 153-174
[2]  
Pan Y.(1956)( Amer J Math 78 289-309
[3]  
Calderón A. P.(1989)) Duke Math J 59 675-700
[4]  
Zygmund A.(1988)On singular integrals Proc Amer Math Soc 103 487-496
[5]  
Carbery A.(2002)On the maximal Riesz-transforms along surfaces J Math Anal Appl 265 163-169
[6]  
Christ M.(1986)Maximal and singular integral operators via Fourier transform estimates Invent Math 84 541-561
[7]  
Vance J.(1997)Singular integral operators with rough kernels supported by subvarieties Amer J Math 119 799-839
[8]  
Wainger S.(1998)Singular integrals and maximal functions associated to surfaces of revolution Indiana Univ Math J 47 455-469
[9]  
Watson D. K.(1996)Rough singular integrals associated to surfaces of revolution Bull London Math Soc 28 291-296
[10]  
Chen L.(2001)Boundedness of singular integrals with rough kernels along surfaces of revolution Proc Amer Math Soc 129 2931-2940