The unifying catalytic mechanism of the RING-between-RING E3 ubiquitin ligase family

被引:0
|
作者
Xiangyi S. Wang
Thomas R. Cotton
Sarah J. Trevelyan
Lachlan W. Richardson
Wei Ting Lee
John Silke
Bernhard C. Lechtenberg
机构
[1] The Walter and Eliza Hall Institute of Medical Research,Ubiquitin Signalling Division
[2] The University of Melbourne,Department of Medical Biology
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The RING-between-RING (RBR) E3 ubiquitin ligase family in humans comprises 14 members and is defined by a two-step catalytic mechanism in which ubiquitin is first transferred from an E2 ubiquitin-conjugating enzyme to the RBR active site and then to the substrate. To define the core features of this catalytic mechanism, we here structurally and biochemically characterise the two RBRs HOIL-1 and RNF216. Crystal structures of both enzymes in their RBR/E2-Ub/Ub transthiolation complexes capturing the first catalytic step, together with complementary functional experiments, reveal the defining features of the RBR catalytic mechanism. RBRs catalyse ubiquitination via a conserved transthiolation complex structure that enables efficient E2-to-RBR ubiquitin transfer. Our data also highlight a conserved RBR allosteric activation mechanism by distinct ubiquitin linkages that suggests RBRs employ a feed-forward mechanism. We finally identify that the HOIL-1 RING2 domain contains an unusual Zn2/Cys6 binuclear cluster that is required for catalytic activity and substrate ubiquitination.
引用
收藏
相关论文
共 50 条
  • [41] Exploring the Structural Mechanism of Covalently Bound E3 Ubiquitin Ligase: Catalytic or Allosteric Inhibition?
    Bjij, Imane
    Khan, Shama
    Betz, Robin
    Cherqaoui, Driss
    Soliman, Mahmoud E. S.
    PROTEIN JOURNAL, 2018, 37 (06): : 500 - 509
  • [42] Exploring the Structural Mechanism of Covalently Bound E3 Ubiquitin Ligase: Catalytic or Allosteric Inhibition?
    Imane Bjij
    Shama Khan
    Robin Betz
    Driss Cherqaoui
    Mahmoud E. S. Soliman
    The Protein Journal, 2018, 37 : 500 - 509
  • [43] Mechanism of Cullin3 E3 Ubiquitin Ligase Dimerization
    Choo, Yin Yin
    Hagen, Thilo
    PLOS ONE, 2012, 7 (07):
  • [44] Characterization of TRIM62 as a RING finger E3 ubiquitin ligase and its subcellular localization
    Huang, Fang
    Xiao, Han
    Sun, Bin-Lian
    Yang, Rong-Ge
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 432 (02) : 208 - 213
  • [45] MAGE-RING Protein Complexes Comprise a Family of E3 Ubiquitin Ligases
    Doyle, Jennifer M.
    Gao, Jinlan
    Wang, Jiawei
    Yang, Maojun
    Potts, Patrick Ryan
    MOLECULAR CELL, 2010, 39 (06) : 963 - 974
  • [46] Essential requirement for RING finger E3 ubiquitin ligase Hakai in early embryonic development of Drosophila
    Kaido, Masako
    Wada, Housei
    Shindo, Masayo
    Hayashi, Shigeo
    GENES TO CELLS, 2009, 14 (09) : 1067 - 1077
  • [47] Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signaling
    Scheufele, Florian
    Wolf, Benjamin
    Kruse, Michael
    Hartmann, Thomas
    Lempart, Justine
    Muehlich, Susanne
    Pfeiffer, Andreas F. H.
    Field, Loren J.
    Charron, Maureen J.
    Pan, Zhen-Qiang
    Engelhardt, Stefan
    Sarikas, Antonio
    CELLULAR SIGNALLING, 2014, 26 (02) : 233 - 239
  • [48] Levels of the Mahogunin Ring Finger 1 E3 Ubiquitin Ligase Do Not Influence Prion Disease
    Silvius, Derek
    Pitstick, Rose
    Ahn, Misol
    Meishery, Delisha
    Oehler, Abby
    Barsh, Gregory S.
    DeArmond, Stephen J.
    Carlson, George A.
    Gunn, Teresa M.
    PLOS ONE, 2013, 8 (01):
  • [49] Ubiquitination of the tomato cell death suppressor Adi3 by the RING E3 ubiquitin ligase AdBiL
    Avila, Julian
    Devarenne, Timothy P.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 430 (01) : 119 - 124
  • [50] The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development
    Illingworth, Robert S.
    Moffat, Michael
    Mann, Abigail R.
    Read, David
    Hunter, Chris J.
    Pradeepa, Madapura M.
    Adams, Ian R.
    Bickmore, Wendy A.
    GENES & DEVELOPMENT, 2015, 29 (18) : 1897 - 1902