Limit Cycles of a Planar Vector Field

被引:0
作者
M. Makhaniok
J. Hesser
S. Noehte
R. Männer
机构
[1] Academy of Sciences,Institute of Engineering Cybernetics
[2] Universität Mannheim,Interdisziplinäres Zentrum für Wissenschaftliches Rechnen
[3] B6,undefined
[4] Universität Heidelberg,undefined
来源
Acta Applicandae Mathematica | 1997年 / 48卷
关键词
limit cycles; vector fields; oscillation theory; second-order dynamic systems; qualitative theory of dynamic systems; phase portrait; optimization; 16th Hilbert Problem;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a solution to the problem to find isolated closed trajectories of two-dimensional dynamic systems. In contrast to the method of Bendixson’s ring regions, the new method is constructive. It allows the determination of the location of closed trajectories and therefore gives an upper bound for their number. The method is based on the idea to use inherent geometrical and physical extremal properties of these trajectories to transform the problem into an optimization task (isoperimetric problem of variational calculus) that can be solved by numerical algorithms, e.g., by hillclimbing.
引用
收藏
页码:13 / 32
页数:19
相关论文
共 50 条
  • [21] Limit Cycles Bifurcations for a Class of Kolmogorov Model in Symmetrical Vector Field
    Du Chaoxiong
    Liu Yirong
    Huang Wentao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03):
  • [22] AN IMPROVED LOWER BOUND ON THE NUMBER OF LIMIT CYCLES BIFURCATING FROM A QUINTIC HAMILTONIAN PLANAR VECTOR FIELD UNDER QUINTIC PERTURBATION
    Johnson, Tomas
    Tucker, Warwick
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01): : 63 - 70
  • [23] LIMIT CYCLES OF PLANAR SYSTEM DEFINED BY THE SUM OF TWO QUASI-HOMOGENEOUS VECTOR FIELDS
    Huang, Jianfeng
    Liang, Haihua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (02): : 861 - 873
  • [24] On vector fields with prescribed limit cycles
    Korchagin A.B.
    Qualitative Theory of Dynamical Systems, 2005, 6 (2) : 217 - 232
  • [25] SOME UPPER ESTIMATES OF THE NUMBER OF LIMIT CYCLES OF PLANAR VECTOR FIELDS WITH APPLICATIONS TO LIENARD EQUATIONS
    Ilyashenko, Yu.
    Panov, A.
    MOSCOW MATHEMATICAL JOURNAL, 2001, 1 (04) : 583 - 599
  • [26] Limit cycles and chaos in planar hybrid systems
    Llibre, Jaume
    Santana, Paulo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [27] ON THE LIMIT-CYCLES FOR A CLASS OF PLANAR SYSTEMS
    ZHENG, ZH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (04) : 605 - 614
  • [28] LIMIT CYCLES AND CENTERS IN A CUBIC PLANAR SYSTEM
    Cherkas, Leonid
    Romanovski, Valery G.
    Xing, Yepeng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (12): : 4127 - 4135
  • [29] Investigations of bifurcations of limit cycles in Z2-equivariant planar vector fields of degree 5
    Li, JB
    Chan, HSY
    Chung, KW
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10): : 2137 - 2157
  • [30] Limit cycles of a class of planar polynomial differential systems
    Debz, Nassima
    Boulfoul, Amel
    Berkane, Abdelhak
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 13592 - 13614