Error estimations of the fourth-order explicit Richardson extrapolation method for two-dimensional nonlinear coupled wave equations

被引:0
作者
Dingwen Deng
Qiang Wu
机构
[1] Nanchang Hangkong University,College of Mathematics and Information Science
[2] Jiangxi Normal University,College of Science and Technology
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Nonlinear coupled wave equations; Explicit difference scheme; Richardson extrapolation method; Convergence; 65M60; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
Although explicit finite difference method (EFDM) for linear wave equation is conditional stability, it has many advantages of low computational memory, cheap computational cost and easy implementation. Meanwhile, stable criterion is comparatively good and acceptable. In this article, an EFDM is generalized to solve nonlinear coupled wave equations in two spaces. Using the discrete energy method and introducing new analytical techniques, it is strictly shown that their solutions are conditionally convergent with an order of O(τ2+hx2+hy2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\tau ^{2}+h_{x}^{2}+h_{y}^{2})$$\end{document} in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}$$\end{document}- and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-norms as the nonlinear terms and their derivatives are locally bounded, instead of global and uniform boundedness, and the nonlinear terms satisfy local Lipschitz condition. Besides, a Richardson extrapolation method (REM) is developed to provide the approximate solutions with a convergent order of O(τ4+hx4+hy4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\tau ^{4}+h_{x}^{4}+h_{y}^{4})$$\end{document} in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}$$\end{document}- and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-norms. It it worth mentioning that the proposed REM has the same stable condition as original EFDM, thus further improving computational efficiency. Finally, numerical results verify the highly computational efficiency of the algorithms.
引用
收藏
相关论文
共 67 条
  • [1] Batiha B(2007)Approximate analytical solution of the coupled sine-Gordon equation using the variational iteration method Phys Scr 76 445-448
  • [2] Noorani MSM(2014)Conservation laws of coupled Klein-Gordon equations with cubic and power law nonlinearities Proc Romanian Acad Ser A 15 123-129
  • [3] Hashim I(1998)Nonlinear dynamics of the Frenkel–Kontorova model Phys Rep 306 1-108
  • [4] Biswas A(2017)Optimal super convergence of energy conserving local discontinuous Galerkin methods for wave equations Commun Comput Phys 21 211-236
  • [5] Kara AH(2019)Numerical simulation of the coupled sine-Gordon equations via a linearized and decoupled compact ADI method Numer Funct Anal Opt 40 1053-1079
  • [6] Moraru L(2018)The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations Appl Math Comput 329 188-209
  • [7] Bokhari AH(2020)The energy preserving finite difference methods and their analyses for system of nonlinear wave equations in two dimensions Appl Numer Math 151 172-198
  • [8] Zaman FD(2021)The studies of the linearly modified energy-preserving finite difference methods applied to solve two-dimensional nonlinear coupled wave equations Numer Algor 62 1864-1879
  • [9] Braun OM(2012)A new fourth-order numerical algorithm for a class of nonlinear wave equations Appl Numer Math 136 435-444
  • [10] Kivshar YS(2017)Exact solitons of the coupled sine-Gordon equation in nonlinear system Optik 13 1115-1126