Hardy-type inequalities on a half-space in the Heisenberg group

被引:0
作者
Heng-Xing Liu
Jing-Wen Luan
机构
[1] Wuhan University,School of Mathematics and Statistics
来源
Journal of Inequalities and Applications | / 2013卷
关键词
Hardy inequality; Heisenberg group; sharp constant;
D O I
暂无
中图分类号
学科分类号
摘要
We prove some Hardy-type inequalities on half-spaces for Kohn’s sub-Laplacian in the Heisenberg group. Furthermore, the constants we obtained are sharp.
引用
收藏
相关论文
共 16 条
[1]  
Nazarov AI(2006)Hardy-Sobolev inequalities in a cone J. Math. Sci 132 419-427
[2]  
Filippas S(2009)On the structure of Hardy-Sobolev-Maz’ya inequalities J. Eur. Math. Soc 11 1165-1185
[3]  
Tertikas A(2001)Stationary states for a two-dimensional singular Schrödinger equation Boll. Unione Mat. Ital, B 4 609-633
[4]  
Tidblom J(2012)Rellich inequalities with weights Calc. Var. Partial Differ. Equ 45 147-164
[5]  
Caldiroli P(2011)On Hardy inequalities with singularities on the boundary C. R. Math. Acad. Sci. Paris, Sér. I 349 273-277
[6]  
Musina R(2012)Hardy-Poincaré inequalities with boundary singularities Proc. R. Soc. Edinb., Sect. A, Math 142 769-786
[7]  
Caldiroli P(2012)On the best constants of Hardy inequality in J. Math. Anal. Appl 389 48-53
[8]  
Musina R(2013) and related improvements Proc. Am. Math. Soc 141 351-362
[9]  
Cazacu C(2004)Hardy type inequalities related to Carnot-Carathéodory distance on the Heisenberg group Differ. Equ 40 552-564
[10]  
Fall MM(2005)Some Hardy inequalities on the Heisenberg group Ann. Sc. Norm. Super. Pisa, Cl. Sci IV 451-486