Adaptive hp-finite element method for solving boundary value problems for the stationary reaction–diffusion equation

被引:0
作者
N. D. Zolotareva
E. S. Nikolaev
机构
[1] Moscow State University,Faculty of Computational Mathematics and Cybernetics
来源
Computational Mathematics and Mathematical Physics | 2015年 / 55卷
关键词
finite element method; adaptive methods; correction indicators; stationary one-dimen-sional reaction–diffusion equations; singularly perturbed boundary value problems;
D O I
暂无
中图分类号
学科分类号
摘要
An adaptive hp-finite element method with finite-polynomial basis functions is constructed for finding a highly accurate solution of a boundary value problem for the stationary reaction–diffusion equation. Adaptive strategies are proposed for constructing a sequence of finite-dimensional subspaces based on the use of correction indicators, i.e., quantities evaluating the degree to which a chosen characteristic of the approximate solution varies when the subspace is expanded by adding new test basis functions. Efficient algorithms for computing correction indicators are described. The method is intended for problems whose solutions have a local singularity, for example, for singularly perturbed boundary value problems.
引用
收藏
页码:1484 / 1500
页数:16
相关论文
共 27 条
[1]  
Babuška I.(1978)A posteriori error estimates for the finite element method Int. J. Numer. Methods Eng. 12 1597-1615
[2]  
Rheinboldt W.(1978)Error estimates for adaptive finite element computations SIAM J. Numer. Anal. 15 736-754
[3]  
Babuška I.(1985)Some a posteriori error estimates for elliptic partial differential equations Math. Comput. 44 283-301
[4]  
Rheinboldt W. C.(1992)A procedure for a posteriori error estimation for h-p finite element methods Comput. Methods Appl. Mech. Eng. 101 73-96
[5]  
Bank R. E.(1993)A unified approach to a posteriori error estimation using element residual methods Numer. Math. 65 23-50
[6]  
Weiser A.(1996)A posteriori error estimates for elliptic problem in two and three space dimensions SIAM J. Numer. Anal. 33 1188-1204
[7]  
Ainsworth M.(1996)A posteriori error estimation and adaptive mesh-refinement techniques J. Comput. Appl. Math. 50 67-83
[8]  
Oden J. T.(1997)A posteriori error estimation in finite element analysis Comput. Meth. Appl. Mech. Eng. 142 1-88
[9]  
Ainsworth M.(1993)A posteriori error estimates based on hierarchical bases SIAM J. Numer. Anal. 30 921-935
[10]  
Oden J. T.(2000)Adaptive mesh refinement in boundary value problems for linear ODE systems Moscow Univ. Comput. Math. Cybern. 3 1-12