The Size of Maximally Irregular Graphs and Maximally Irregular Triangle-Free Graphs

被引:0
作者
Fengxia Liu
Zhao Zhang
Jixiang Meng
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Irregularity index; Maximally irregular graphs; Triangle-free graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph. The irregularity index of G, denoted by t(G), is the number of distinct values in the degree sequence of G. For any graph G, t(G) ≤ Δ(G), where Δ(G) is the maximum degree. If t(G) = Δ(G), then G is called maximally irregular. In this paper, we give a tight upper bound on the size of maximally irregular graphs, and prove the conjecture proposed in [6] on the size of maximally irregular triangle-free graphs. Extremal graphs are also characterized.
引用
收藏
页码:699 / 705
页数:6
相关论文
共 11 条
[1]  
Alavi Y.(1987)Highly irregular graphs J. Graph Theory 11 225-249
[2]  
Chartrand G.(1997)Degree sequence of highly irregular graphs Discrete Math. 164 225-236
[3]  
Chung F.R.K.(1997)Highly irregular graphs with extreme numbers of edges Discrete Math. 164 237-242
[4]  
Erdős P.(2012)A note on diameter and the degree sequence of a graph Appl. Math. Lett. 25 175-178
[5]  
Graham R.L.(undefined)undefined undefined undefined undefined-undefined
[6]  
Oellermann O.R.(undefined)undefined undefined undefined undefined-undefined
[7]  
Majcher Z.(undefined)undefined undefined undefined undefined-undefined
[8]  
Michael J.(undefined)undefined undefined undefined undefined-undefined
[9]  
Majcher Z.(undefined)undefined undefined undefined undefined-undefined
[10]  
Michael J.(undefined)undefined undefined undefined undefined-undefined