共 50 条
Bromelain Loaded Lipid-Polymer Hybrid Nanoparticles for Oral Delivery: Formulation and Characterization
被引:0
|作者:
Mahboubeh Ebrahimian
Fatemeh Mahvelati
Bizhan Malaekeh-Nikouei
Ezzat Hashemi
Fatemeh Oroojalian
Maryam Hashemi
机构:
[1] Mashhad University of Medical Sciences,Department of Pharmaceutical Biotechnology, School of Pharmacy
[2] Mashhad University of Medical Sciences,School of Pharmacy
[3] Mashhad University of Medical Sciences,Nanotechnology Research Center, Pharmaceutical Technology Institute
[4] Stanford University,Department of Neurology and Neurological Science
[5] North Khorasan University of Medical Sciences,Department of Advanced Technologies in Medicine, School of Medicine
[6] North Khorasan University of Medical Sciences,Natural Products and Medicinal Plants Research Center
来源:
Applied Biochemistry and Biotechnology
|
2022年
/
194卷
关键词:
Bromelain;
Oral administration;
Lipid-polymer nanoparticles;
PLGA;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Bromelain (Br), a mixture of proteolytic enzymes from pineapple (Ananas comosus), has various therapeutic potentials; however, its low bioavailability has limited the clinical applications specifically in oral delivery as the most common convenient used route of administration. In the present study, a lipopolymeric nanoparticle (NP) containing Br was developed to enhance its stability and oral delivery efficiency. Firstly, Br was loaded into poly (D, L-lactide-co-glycolide acid) (PLGA) and PLGA-phosphatidylcholine (PLGA-PC) NPs using double emulsion solvent evaporation technique. Then, Br integrity and activity were investigated using SDS-PAGE and gelatin test. The stability and release profile of Br from synthetized NPs were evaluated at different pH values of the digestive system. Furthermore, cytotoxicity, cellular uptake, and the amount of Br passage from Caco-2 cells were explored. The results showed PLGA-PC-Br NPs had higher encapsulation efficiency (83%) compared to PLGA-Br NPs (50%). In addition, this NP showed more Br released in neutral (20.36%) and acidic (34%) environments compared to PLGA-Br NPs after 5 days. The delay in the release of Br from PLGA-PC-Br NPs versus the faster release of Br from PLGA-Br formulation could assure that an appropriate concentration of Br has reached the intestine. Intestinal absorption study demonstrated that lipid polymer NPs were able to pass through Caco-2 cells about 1.5 times more (98.4%) than polymeric NPs (70%). In conclusion, PLGA-PC NPs would be considered as a promising lipid-polymer nanocarrier for effective intestinal absorption of Br.
引用
收藏
页码:3733 / 3748
页数:15
相关论文