Quantitative lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p$$\end{document}-Improving for Discrete Spherical Averages Along the Primes

被引:0
作者
Theresa C. Anderson
机构
[1] Purdue University,Department of Mathematics
关键词
Hardy–Littlewood circle method; Fourier multipliers; Waring–Goldbach problem;
D O I
10.1007/s00041-020-09733-x
中图分类号
学科分类号
摘要
We show quantitative (in terms of the radius) lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p$$\end{document}-improving estimates for the discrete spherical averages along the primes. These averaging operators were defined in [1] and are discrete, prime variants of Stein’s spherical averages. The proof uses a precise decomposition of the Fourier multiplier.
引用
收藏
相关论文
共 9 条