Gevrey regularity of the solutions of some inhomogeneous semilinear partial differential equations with variable coefficients

被引:0
作者
Remy, Pascal [1 ]
机构
[1] Univ Versailles St Quentin, Lab Math Versailles, 45 Ave Etats Unis, F-78035 Versailles, France
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2023年 / 4卷 / 03期
关键词
Gevrey order; Inhomogeneous partial differential equation; Nonlinear partial differential equation; Newton polygon; Formal power series; Divergent power series; POWER-SERIES SOLUTIONS; MAILLET TYPE THEOREM; FORMAL SOLUTIONS; DIVERGENT SOLUTIONS; BOREL SUMMABILITY; NEWTON POLYGONS; HEAT-EQUATION; INTEGRODIFFERENTIAL EQUATIONS; MULTISUMMABILITY; ORDER;
D O I
10.1007/s42985-023-00236-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we are interested in the Gevrey properties of the formal power series solution in time of some partial differential equations with a power-law nonlinearity and with analytic coefficients at the origin of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}<^>2$$\end{document}. We prove in particular that the inhomogeneity of the equation and the formal solution are together s-Gevrey for any s >= sc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\geqslant s_c$$\end{document}, where sc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_c$$\end{document} is a nonnegative rational number fully determined by the Newton polygon of the associated linear PDE. In the opposite case s<sc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s<s_c$$\end{document}, we show that the solution is generically sc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_c$$\end{document}-Gevrey while the inhomogeneity is s-Gevrey, and we give an explicit example in which the solution is s '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s'$$\end{document}-Gevrey for no s '<sc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s'<s_c$$\end{document}.
引用
收藏
页数:18
相关论文
共 63 条
[1]  
[Anonymous], 1989, Asymptotic Anal, DOI DOI 10.3233/ASY-1989-2104
[2]   Multi summability of formal power series solutions of partial differential equations with constant coefficients [J].
Balser, W .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 201 (01) :63-74
[3]   Divergent solutions of the heat equation: On an article of Lutz, Miyake and Schafke [J].
Balser, W .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 188 (01) :53-63
[4]  
Balser W., 1999, ACTA SCI MATH, V65, P543
[5]  
Balser W., 2000, UNIVERSITEX
[6]  
Balser W., 2009, Adv. Dyn. Syst. Appl., V4, P159
[7]   Gevrey Order of Formal Power Series Solutions of Inhomogeneous Partial Differential Equations with Constant Coefficients [J].
Balser, Werner ;
Yoshino, Masafumi .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (03) :411-434
[8]   MULTISUMMABILITY OF FORMAL POWER-SERIES SOLUTIONS OF NONLINEAR MEROMORPHIC DIFFERENTIAL-EQUATIONS [J].
BRAAKSMA, BLJ .
ANNALES DE L INSTITUT FOURIER, 1992, 42 (03) :517-540
[9]  
Canalis-Durand M, 2000, J REINE ANGEW MATH, V518, P95
[10]   Borel summability of the heat equation with variable coefficients [J].
Costin, O. ;
Park, H. ;
Takei, Y. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (04) :3076-3092