A Symmetry Property for Fully Nonlinear Elliptic Equations on the Sphere

被引:0
作者
Phillipo Lappicy
机构
[1] Universidade de São Paulo,Instituto de Ciências Matemáticas e de Computação
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2020年 / 51卷
关键词
Fully nonlinear elliptic equations; Symmetry property; Spherical Laplace–Beltrami;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this paper is to study how the symmetry of the spherical domain influences solutions of elliptic equations on such domain. The method pursued is a variant of the moving plane method, discovered by Alexandrov (1962) and used for differential equations by Gidas, Ni and Nirenberg (1979). We obtain a reflectional symmetry result with respect to maxima and minima of solutions.
引用
收藏
页码:671 / 680
页数:9
相关论文
共 29 条
[1]  
Alexandrov AD(1962)A characteristic property of spheres Ann. Mat. Pura App. 58 303-315
[2]  
Babin AV(1994)Symmetrization properties of parabolic equations in symmetric domains J. Dyn. Differ. Equ. 6 639-658
[3]  
Brock F(2000)Some new symmetry results for elliptic problems on the sphere and in Euclidean space J. Rend. Circ. Mat. Palermo 49 445-462
[4]  
Prajapat J(2000)Gevrey regularity for nonlinear analytic parabolic equations on the sphere J. Dyn. Differ. Equ. 12 411-433
[5]  
Cao C(2004)Heteroclinic orbits between rotating waves of semilinear parabolic equations on the circle J. Differ. Equ. 201 99-138
[6]  
Rammaha MA(1979)Symmetry and related properties via the maximum principle Commun. Math. Phys. 68 209-243
[7]  
Titi ES(1994)Symmetry and convergence properties for non Proc. R. Soc. Edinb. 124 573-587
[8]  
Fiedler B(1988)negative solutions of nonautonomous reaction Commun. Pure Appl. Math. 41 667-681
[9]  
Rocha C(1998)diffusion problems Duke Math. J. 91 17-28
[10]  
Wolfrum M(2019)Unique continuation in geometry Phys. Rev. D 99 043509-1762