An analogue of the Bombieri–Vinogradov Theorem for Fourier coefficients of cusp forms

被引:0
作者
Ratnadeep Acharya
机构
[1] Indian Statistical Institute,Theoretical Statistics and Mathematics Unit
来源
Mathematische Zeitschrift | 2018年 / 288卷
关键词
Fourier Coefficient; Cusp Form; Arithmetic Progression; Residue Class; Primitive Character;
D O I
暂无
中图分类号
学科分类号
摘要
We prove analogues of the Bombieri–Vinogradov Theorem and the Barban–Davenport–Halberstam Theorem on primes in arithmetic progressions for Fourier coefficients of cusp forms.
引用
收藏
页码:23 / 37
页数:14
相关论文
共 13 条
[1]  
Deligne P(1974)La conjecture de Weil. I Inst. Hautes Etudes Sci. Publ. Math. 43 273-307
[2]  
Fouvry E(2014)Strong orthogonality between the Möbious function, additive characters and Fourier coefficients of cusp forms Compos. Math. 150 763-797
[3]  
Ganguly S(1967)Footnote to the Titchmarsh–Linnik divisor problem Proc. Am. Math. Soc. 18 187-188
[4]  
Halberstam H(1995)Siegel zeros and cusp forms Int. Math. Res. Not. 6 279-308
[5]  
Hoffstein J(2005)Summation formulae for the coefficients of Can. J. Math. 57 494-505
[6]  
Ramakrishnan D(2003)-functions J. Am. Math. Soc. 16 139-183
[7]  
Iwaniec H(2012)Functoriality for the exterior square of J. Number Theory 132 869-887
[8]  
Friedlander JB(2013) and symmetric fourth of J. Am. Math. Soc. 26 735-776
[9]  
Kim H(1977), with Appendix 1 by D. Ramakrishnan, and Appendix 2 by H. Kim and P. Sarnak C. R. Acad. Sci. Paris Sér. A-B 285 A981-A983
[10]  
Lau YK(undefined)On a variance of Hecke eigenvalues in arithmetic progressions undefined undefined undefined-undefined