Prediction of infectivity of SARS-CoV-2 virus based on Spike-hACE-2 interaction

被引:0
作者
Chaudhuri D. [1 ]
Datta J. [1 ]
Majumder S. [1 ]
Giri K. [1 ]
机构
[1] Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata
关键词
Binding affinity; Cancer variants; hACE-2; Network analysis; Population variants; Spike;
D O I
10.1007/s13337-022-00781-z
中图分类号
学科分类号
摘要
The COVID-19 pandemic caused by SARS-CoV-2 results almost 3 M death worldwide and till continuing in spite of having several vaccine against the virus. One of the main reasons is the mutations occur in the virus to cope with the environment. Detail study of genomics and proteomics level of each components may help to combat the situation. Spike (S) protein that covers the surface of the virus helps in entry by encountering the host receptor Human Angiotensin-Converting Enzyme-2 (hACE-2) with other different roles. In this study, we accomplish our work with the mutations in receptor binding domain (RBD) of Spike (S) protein considering different aspects like the hACE-2 variants in human populations to get an idea about the varying infectivity of different strains for different population. Several other parameters affecting the viral infectivity and in different diseased condition were also studied which may guide to a better insight in developing future therapeutics. © 2022, The Author(s), under exclusive licence to Indian Virological Society.
引用
收藏
页码:244 / 250
页数:6
相关论文
共 28 条
[21]  
Li Q., Wu J., Nie J., Li Z., Hao H., Liu S., Zhao C., Zhang Q., Liu H., Nie L., Qin H., Wang M., Lu Q., Li X., Sun Q., Liu J., Zhang L., Li X., Huang W., Wang Y., The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity, Cell, 182, 5, pp. 1284-1294, (2020)
[22]  
Storz J.F., Compensatory mutations and epistasis for protein function, Curr Opin Struct Biol, 50, pp. 18-25, (2018)
[23]  
Kong Q., Xiang Z., Wu Y., Gu Y., Guo J., Geng F., Analysis of the susceptibility of lung cancer patients to SARS-CoV-2 infection, Mol Cancer, 19, 1, (2020)
[24]  
Zhang H., Quek K., Chen R., Chen J., Chen B., Expression of the SARS-CoV-2 receptor ACE2 reveals the susceptibility of COVID-19 in non-small cell lung cancer, J Cancer, 11, 18, pp. 5289-5292, (2020)
[25]  
Uhlen M., Fagerberg L., Hallstrom B.M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson A., Kampf C., Sjostedt E., Asplund A., Olsson I., Edlund K., Lundberg E., Navani S., Szigyarto C.A., Odeberg J., Djureinovic D., Takanen J.O., Hober S., Alm T., Edqvist P.H., Berling H., Tegel H., Mulder J., Rockberg J., Nilsson P., Schwenk J.M., Hamsten M., von Feilitzen K., Forsberg M., Persson L., Johansson F., Zwahlen M., von Heijne G., Nielsen J., Ponten F., Proteomics. Tissue-based map of the human
[26]  
Jyotsana N., King M.R., The Impact of COVID-19 on cancer risk and treatment, Cell Mol Bioeng, 13, 4, pp. 1-7, (2020)
[27]  
Allegra A., Pioggia G., Tonacci A., Musolino C., Gangemi S., Cancer and SARS-CoV-2 infection: diagnostic and therapeutic challenges, Cancers (Basel), 12, 6, (2020)
[28]  
Rugge M., Zorzi M., Guzzinati S., SARS-CoV-2 infection in the Italian Veneto region: adverse outcomes in patients with cancer, Nat Cancer, 1, pp. 784-788, (2020)