Path loss prediction in urban environment using learning machines and dimensionality reduction techniques

被引:49
作者
Piacentini M. [1 ]
Rinaldi F. [1 ]
机构
[1] Dipartimento di Informatica e Sistemistica, Sapienza Universitá di Roma, 00184 Rome
关键词
Dimensionality reduction techniques; Learning machines; Path loss prediction;
D O I
10.1007/s10287-010-0121-8
中图分类号
学科分类号
摘要
Path loss prediction is a crucial task for the planning of networks in modern mobile communication systems. Learning machine-based models seem to be a valid alternative to empirical and deterministic methods for predicting the propagation path loss. As learning machine performance depends on the number of input features, a good way to get a more reliable model can be to use techniques for reducing the dimensionality of the data. In this paper we propose a new approach combining learning machines and dimensionality reduction techniques. We report results on a real dataset showing the efficiency of the learning machine-based methodology and the usefulness of dimensionality reduction techniques in improving the prediction accuracy. © 2010 Springer-Verlag.
引用
收藏
页码:371 / 385
页数:14
相关论文
共 24 条
[1]  
Balandier T., Caminada A., Lemoine V., Alexandre F., 170 MHz Field strength prediction in urban environments using neural nets, Proceedings of IEEE international symposium on personal, 1, pp. 120-124, (1995)
[2]  
Bertsekas D.P., Nonlinear Programming, (1999)
[3]  
Byrd R.H., Lu P., Nocedal J., A limited memory algorithm for bound constrained optimization, SIAM J Sci Stat Comput, 16, 5, pp. 1190-1208, (1995)
[4]  
Blumer A., Ehrenfeucht A., Hausler D., Warmuth M.K., Occam's razor, Inf Process Lett, 24, pp. 377-380, (1987)
[5]  
Bishop C.M., Neural Networks for Pattern Recognition, (1995)
[6]  
Cardona N., Fraile R., Macrocellular coverage prediction for all ranges of antenna height using neural networks, Universal personal communications, 1, pp. 21-25, (1998)
[7]  
Chang P.-R., Yang W.-H., Environment-adaptation mobile radio propagation prediction using radial basis function neural networks, IEEE Trans Veh Technol, 46, 1, pp. 155-160, (1997)
[8]  
Chan G.K., Propagation and coverage prediction for cellular radio systems, IEEE Trans Veh Technol, 40, 4, pp. 665-670, (1991)
[9]  
Dersch U., Braun W.R., A physical radio channel model, (1991)
[10]  
Fan R.-E., Chen P.-H., Lin C.-J., Working set selection using the second order information for training SVM, J Mach Learn Res, 6, pp. 1889-1918, (2005)