The affine preservers of non-singular matrices

被引:0
|
作者
Clément de Seguins Pazzis
机构
[1] Lycée Privé Sainte-Geneviève,
来源
Archiv der Mathematik | 2010年 / 95卷
关键词
Primary 15A86; Secondary 15A63; 11E57; Linear preservers; General linear group; Singular subspaces; Affine group; Rank; Linear subspaces; Symplectic group; Arf invariant; Quadratic forms; Symmetric group;
D O I
暂无
中图分类号
学科分类号
摘要
When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{K}}$$\end{document} is an arbitrary field, we study the affine automorphisms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm M}_n(\mathbb{K})}$$\end{document} that stabilize \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm GL}_n(\mathbb{K})}$$\end{document}. Using a theorem of Dieudonné on maximal affine subspaces of singular matrices, this is easily reduced to the known case of linear preservers when n > 2 or # \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{K} > 2}$$\end{document}. We include a short new proof of the more general Flanders theorem for affine subspaces of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm M}_{p,q}(\mathbb{K})}$$\end{document} with bounded rank. We also find that the group of affine transformations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm M}_2(\mathbb{F}_2)}$$\end{document} that stabilize \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm GL}_2(\mathbb{F}_2)}$$\end{document} does not consist solely of linear maps. Using the theory of quadratic forms over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_2}$$\end{document}, we construct explicit isomorphisms between it, the symplectic group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Sp}_4(\mathbb{F}_2)}$$\end{document} and the symmetric group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{S}_6}$$\end{document}.
引用
收藏
页码:333 / 342
页数:9
相关论文
共 50 条
  • [41] Non-singular non-flat universes
    Estupinan Salamanca, Andres Felipe
    Medina, Sergio Bravo
    Nowakowski, Marek
    Batic, Davide
    ANNALS OF PHYSICS, 2022, 436
  • [42] An Iteration Approach for the Scattering of Non-Singular and Singular Potentials
    Sharma, Lalit K.
    Chaturvedi, Narendra
    Douglas, Letsholathebe
    CHIANG MAI JOURNAL OF SCIENCE, 2011, 38 (01): : 23 - 30
  • [43] Collatz map as a non-singular transformation
    Assani, I.
    STUDIA MATHEMATICA, 2024, 275 (03) : 249 - 261
  • [44] NON-SINGULAR B-GROUPS
    ILYASHEN.YS
    DOKLADY AKADEMII NAUK SSSR, 1973, 208 (05): : 1020 - 1022
  • [45] ON NON-SINGULAR SEMIGROUPS OF TRANSITION KERNELS
    NUMMELIN, E
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 9 - 9
  • [46] Non-singular radiation cosmological models
    Fernández-Jambrina, L
    González-Romero, LM
    MODERN PHYSICS LETTERS A, 2004, 19 (08) : 583 - 595
  • [47] SEMIGROUP OF LINEAR NON-SINGULAR AUTOMATS
    ECKER, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1972, 52 (04): : T225 - &
  • [48] On factors of non-singular Cartesian products
    Del Junco, A
    Silva, CE
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 1445 - 1465
  • [49] On non-singular GRADELA crack fields
    Aifantis, Elias C.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2014, 4 (05)
  • [50] EXPONENTIALS OF NON-SINGULAR SIMPLICIAL SETS
    Fjellbo, Vegard
    Rognes, John
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2022, 24 (02) : 307 - 314