Power-commuting skew derivations on Lie ideals

被引:0
|
作者
Vincenzo De Filippis
Shuliang Huang
机构
[1] University of Messina,Department of Mathematics and Computer Science
[2] Chuzhou University,Department of Mathematics
来源
Monatshefte für Mathematik | 2015年 / 177卷
关键词
Skew derivation; Automorphism; Generalized polynomial identities; Lie ideal; 16N20; 16W25; 16N55;
D O I
暂无
中图分类号
学科分类号
摘要
Let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} be a prime ring of characteristic different from 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} and 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}, L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} a non-central Lie ideal of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, (d,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d,\sigma )$$\end{document} a nonzero skew derivation of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} a fixed positive integer. If [d(x),x]n=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[d(x),x]^{n}=0$$\end{document} for all x∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in L$$\end{document}, then R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} satisfies s4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{4}$$\end{document}.
引用
收藏
页码:363 / 372
页数:9
相关论文
共 50 条
  • [41] On generalized Lie derivations of Lie ideals of prime algebras
    Liao, Ping-Bao
    Liu, Cheng-Kai
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1236 - 1242
  • [42] An Engel condition with skew derivations for one-sided ideals
    Liu, Cheng-Kai
    MONATSHEFTE FUR MATHEMATIK, 2016, 180 (04): : 833 - 852
  • [43] Hypercentralizing generalized skew derivations on left ideals in prime rings
    V. De Filippis
    O. M. Di Vincenzo
    Monatshefte für Mathematik, 2014, 173 : 315 - 341
  • [44] An Engel condition with skew derivations for one-sided ideals
    Cheng-Kai Liu
    Monatshefte für Mathematik, 2016, 180 : 833 - 852
  • [45] Hypercentralizing generalized skew derivations on left ideals in prime rings
    De Filippis, V.
    Di Vincenzo, O. M.
    MONATSHEFTE FUR MATHEMATIK, 2014, 173 (03): : 315 - 341
  • [46] Generalized derivations on Lie ideals in prime rings
    Basudeb Dhara
    Sukhendu Kar
    Sachhidananda Mondal
    Czechoslovak Mathematical Journal, 2015, 65 : 179 - 190
  • [47] Central extensions and derivations of the Lie algebras of skew derivations for the quantum torus
    Lin, WQ
    Tan, SB
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (11) : 3919 - 3938
  • [48] Generalized derivations on Lie ideals in prime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Mondal, Sachhidananda
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 179 - 190
  • [49] The orthogonal Lie algebra of operators: Ideals and derivations
    Bu, Qinggang
    Zhu, Sen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)
  • [50] Generalized derivations on Lie ideals in semiprime rings
    Aboubakr A.
    González S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (4): : 841 - 850